Nano-consensus: ultra-fast, quorum-Iless coordination on the wire

Anonymous Author(s)

ABSTRACT

Consensus, widely regarded as the most fundamental primitive in
distributed systems, lies at the core of countless services that require
coordination among remote processes. Datacenter services typi-
cally achieve consensus through long-established, quorum-based
algorithms such as Paxos and Raft, including recent re-adaptations
for kernel bypass datapaths (e.g. smartNIC/RDMA-based consen-
sus). While these optimizations can reduce latency to the ps-scale,
they remain constrained by inherent message complexity, namely
the need for acknowledgements from majority quorums to tol-
erate faults and arbitrary message delays. Our approach takes a
step further from bare acceleration of classical primitives, based
on the observation that remote interactions on modern datacen-
ter network devices fabric can exhibit stable latencies in practice.
We substantiate this property through careful system design using
FPGA-smartNIC and priority-queue reservation, and use it to in-
troduce a novel quorum-less consensus primitive: Nano-consensus.
Our hardware prototype operates at network line rate and can
reach consensus in 1.03ps for single-packet instances, delivering a
3.82x latency improvement over the state of the art while signifi-
cantly increasing goodput by more than 4.8X. We demonstrate how
Nano-consensus can be integrated into distributed applications to
boost both performance and consistency.

CCS CONCEPTS

« Hardware — Networking hardware; « Computer systems
organization — Availability; « Computing methodologies —
Distributed algorithms.

KEYWORDS

High-availability, coordination, datacenter, smartNIC, FPGA, con-
sensus, hardware-offload

ACM Reference Format:

Anonymous Author(s). 2025. Nano-consensus: ultra-fast, quorum-less coor-
dination on the wire. In Proceedings of TACM Symposium on Cloud Comput-
ing 2025 (SoCC 2025). ACM, New York, NY, USA, 14 pages. https://doi.org/
XXXXXXXXXXXXXX

1 INTRODUCTION

Coordination in datacenters. Modern high-performance, user-
facing applications including ps-scale key-values stores and high-
frequency trading frameworks are deployed as interactive online
services running 24 X 7 in datacenters with stringent availability
and reliability requirements only be met by replication and or-
chestration on multiple resources. Such distributed coordination
is provided by algorithms which solve the well-known consensus
problem. As network bandwidth approaches the Tbps limit [3] and
demands increase accordingly, a primary concern in datacenter

SoCC 2025, November 19-21, 2025, Online
2025. ACM ISBN 978-X-XXXX-XXXX-X/XX/XX...$15.00
https://doi.org/XXXXXXX.XXXXXXX

design is making consensus efficient to avoid it being a bottleneck
without sacrificing fault tolerance or consistency.

The limits of software coordination. This very challenging task
has recently received significant research attention, with focus
on accelerating traditional quorum-based consensus algorithms
via kernel bypass technologies in software. Recent solutions in-
clude adaptations of popular Paxos [48] and Raft [62] algorithms
to custom network stacks [40, 44], remote direct memory access
(RDMA) [7, 31, 39], data plane development kit (DPDK) [46], and
extended Berkeley packet filter (eBPF) express data path (XDP) [71,
83]. By overcoming the limitations posed by the traditional network
stack, these approaches manage to reach consensus in tens of ps
while withstanding high request throughput in the common-case.
Alas, software coordination algorithms often have to compromise
good common-case performance benefits with high tail-latency
beyond some 99.x® percentile. This limitation arises from the in-
herent multi-tasking nature of the underlying software stack and
operating system (OS), which must inevitably sacrifice, i.e., de-
lay/preempt, some processing tasks upon contention. In addition,
on top of relying on specific kernel bypass technologies (often a
given version), these solutions employ disruptive optimizations
(e.g., custom priority scheduling [28, 56], heavily customized OS
and power configuration settings [31, 40, 71]), and also require a lot
of server CPU cores and network bandwidth. As a result, software
coordination algorithms are often difficult to deploy and co-locate
on general-purpose servers — contrary to the common assumption
that software inherently offers such flexibility.

Shortcomings of bare acceleration. The rising availability of smart
network interface controllers (smartNICs) equipped with field pro-
grammable gate arrays (FPGAs) in major clouds, e.g., Alibaba [9],
Amazon [12] and several others [15], offer a more efficient, more
stable and self-contained alternative to software-based packet pro-
cessing routines. A small number of hardware-supported consensus
algorithms have emerged in this context, including services which
partially or fully offload algorithms to programmable network
switches [14, 22, 23, 42] or to programmable smartNICs [40]. FPGA-
based smartNIC (FPGA-smartNIC) solutions [10, 36, 38], spear-
headed by Consensus in a Box [38], have proven to be able to handle
a near-to-capacity rate of client requests at a low latency [10], out-
performing software solutions. However, these approaches have
a fundamental limitation in that they only focus on accelerating
classic quorum-based consensus algorithms which were devised
for slower, unreliable networks and unpredictable software pro-
cessing latency, thus overlooking the interaction (communication
+ processing) stability of modern network hardware. As shown in
our extensive tests under heavy network and processing stress (see
Tab. 1), hardware worst-case remote interaction latency exhibits
only few nanoseconds more than the average, unlike traditional soft-
ware stacks which incur heavy latency degradation towards the tail.
Our work instead builds on this key observation: the combination

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SoCC 2025, November 19-21, 2025, Online

of uninterrupted access to incoming packets on dedicated hard-
ware modules and reliable datacenter network protocols providing
bounded latency [30, 40, 71] make it practical to build systems re-
lying on synchronous interactions for critical tasks. FiDe [71] for
instance combines traffic and process isolation techniques in soft-
ware along with techniques for reliable network communication
(redundancy and recovery) to achieve synchrony in a “slice” of the
datacenter. This slice is exploited to implement reliable process fail-
ure detection supporting simpler algorithms, and even further for
novel consensus algorithms leading to speedups even in failure-free
runs. FiDe however targets commodity systems without smartNICs.

Unleashing hardware potential with nano-consensus. We propose
Nano-consensus, a novel system based on software/FPGA-based
smartNICs co-design which exploits the programmability and pre-
dictability of datacenter networks. Our prototype shows that plac-
ing logic close to the wire leads to extremely robust processing times
which, together with traffic prioritization in network switches, lim-
its the worst-case latency to a mere few clock cycles more than the
average (30ns in our experiments). We use the achieved interaction
stability to devise a novel, leader-based consensus primitive, dubbed
looped one-way imposition (LOWI), which requires only one mes-
sage delay to reach consensus when multiple instances are executed
in series, e.g., to implement state machine replication (SMR). To be
clear, the efficiency and correctness of LOWI depend on assuming
synchrony. While all-encompassing synchrony is unfeasible, we
find the probability of synchrony violations in a controlled dat-
acenter environment is negligible for practical purposes, as also
evidenced by recent software services [40, 71]. Nano-consensus fur-
ther supports synchrony from the ground up by delegating its execu-
tion entirely to network hardware, in contrast to works that simply
take synchrony as a given including replicated services [1, 2, 69] and
blockchains [4, 33, 58, 59]. As network failures occur less frequently
than protocol-level errors like CRC checks, operating under the
assumption that the network failures that occur can be masked by
redundancy does not substantially affect our system’s availability.

Improvements. LOWI introduces important algorithmic improve-
memts with respect to classical synchronous consensus algorithms,
e.g., by Lynch [55] in which processes disseminate n?> messages
per round and different correct processes might decide in different
rounds, not allowing for our “looped” optimization. Nano-consensus
handles failures in hardware and can tolerate up to n — 1 failures
of the n endhosts, showcasing how re-architecting services con-
sidering modern network capabilities can achieve optimality in
both message complexity and resilience. Our prototype can process
packets at network line-rate and is the first one to our knowledge
to achieve 1-microsecond latency for a single consensus decision. It
also handles leader failures in 2pus and can achieve a server response
time of 1.03ps when used to implement a simple SMR application, re-
spectively 30X and 3.82x lower latency and 4.8X higher throughput
than Waverunner [10] — the fastest FPGA-smartNIC SMR engine
to our knowledge. Nano-consensus also outperforms software im-
plementations and is deployed on modern SoC + FPGA off-path
smartNICs that can be connected to a server out-of-the-box, leaving
the host system completely unaffected.

Contributions. Our contributions are summarized as follows:

Anon.

Table 1: Different percentiles of worst-case latencies mea-
sured over 40 days (50th corresponds to the median) in ps.

50th ggth 99.99th 1goth
Nano-consensus 1.41 1.45 1.45 1.48
RDMA 3.15 3.93 8.18 144.78
AF _XDP 13.54 29.03 51.77 170.57
UDP 13.48 72.07 165.04 996.65

e We propose the design of Nano-consensus, a novel coordi-
nation engine operating as fast as the underlying network.
e We introduce a new quorum-less consensus algorithm using
practical synchronous interaction supported by our system.
e We outline the implementation of Nano-consensus on Al-
tera’s F2000X-PL [63] infrastructure processing unit (IPU).
We empirically evaluate our prototype in terms of interaction
stability, performance, and failure recovery in a datacenter of
a major cloud service provider!. In short, Nano-consensus
outperforms state-of-the-art hardware and software solu-
tions, e.g., respectively reducing latency by 3.82x and 5.3x
and increasing goodput by 4.8X and 12x.
e We use Nano-consensus to implement SMR which we inte-
grate into a key-value store, providing strong consistency
without compromising native performance.

The remainder of this paper is structured as follows. § 3 presents
Nano-consensus’s design. § 4 specifies its core consensus algorithm
and § 5 presents implementation details. § 6 evaluates it by compar-
ison to the state of the art. § 7 puts it into perspective. § 8 contrasts
it with related work. § 9 concludes with final remarks.

2 BACKGROUND AND MOTIVATION

2.1 The rise of programmable network devices

From the end of Dennard scaling [43] more than a decade ago,
processor design has shifted from increasing clock speed to in-
creasing parallelization. Building upon this, a more recent trend
shows another drastic change of datacenter hardware towards more
specialized architectures, creating end-to-end heterogeneous sys-
tems optimized for specific workloads [76]. In this ecosystem, pro-
grammable network devices have arisen to enable offloading of
custom logic to both the core of the network (e.g., programmable
switches [45]) and network nodes (smartNICs [81]). Among the
latter devices, FPGA-smartNICs offering full-fledged hardware cus-
tomization have become widely available in the market and in
the cloud, with major providers such as Alibaba [9], Amazon [12]
and several others [15] exposing them to application developers in
their datacenters. Nano-consensus exploits the design of Altera’s in-
frastructure processing unit (F2000X-PL) [63]2, using the on-board
FPGA to implement a high-performance consensus protocol, as in
related works [10, 38].

!Name omitted due to double-blind submission.
2Full datasheet not available because the card is at a pre-production stage.

Nano-consensus: ultra-fast, quorum-less coordination on the wire

2.2 Accelerating consensus in datacenters

Consensus is the problem of reaching an agreement among multiple
processes — often regarded as the most important in distributed
systems [80]. Its long research history has produced countless al-
gorithms which are at the heart of critical datacenter services,
such as in state machine replication (SMR) which ensures that
a replicated system is available and consistent even if some servers
fail. This is typically achieved by establishing a majority quorum
of size f + 1 where f is the maximum number of tolerated fail-
ures and n = 2f + 1 is the minimum number of processes/repli-
cas needed. Established quorum-based consensus algorithms such
as Paxos [48] and Raft [62] ensure that a system is safe and live
in the partially-synchronous model where messages have to be
eventually delivered (i.e., can be arbitrarily delayed until a global
stabilization time). These guarantees come at the cost of increased
communication complexity. In widely adopted variations of Paxos
and Raft, a decision can be taken only as quickly as a quorum
round-trip allows. This performance overhead is often so high that
practical systems loosen consistency guarantees, (e.g., Redis default
replication uses best-effort broadcast [69]). To address the problem,
state-of-the-art solutions exploit kernel bypass techniques to reduce
packet processing overhead and accelerate consensus. These tech-
niques include RDMA [7, 31, 39, 41, 66], DPDK [46], eBPF XDP [83]
and custom network stacks [40, 44]. In this context, few emerg-
ing consensus implementations with software/FPGA-smartNIC co-
design [10, 14, 36, 38] offer significant performance improvements
compared to software-only counterparts. Besides bare increased
performance, we show how FPGA-smartNICs offer extremely sta-
ble and predictable processing times and have a negligible impact
on tail-latency compared to sources of interference at the host (cf.

§6.2).
3 DESIGN

Nano-consensus provides a novel uniform consensus and replica-
tion engine designed for a cluster of FPGA-smartNICs in a datacen-
ter. Our system takes proposal requests from clients in the form of
network packets and reaches a comon decision among nodes in the
cluster. We use at least one physical NIC per node.

3.1 System model

For a long time, all distributed systems have been communally
considered to be asynchronous, i.e., devoid of upper bounds on
communication and processing delays, confounding all kinds of
setups including local-area vs wide-area deployments, wired vs
wireless communication, stationary vs mobile hosts, etc. There
have been significant improvements on all fronts since, and more
differentiation between setups. Several systems have thus started
to go against that common wisdom including

o distributed datacenter services, e.g., reliable failure detec-
tors [71], low-latency messaging systems [40] which achieve
bounded interaction in software through complex OS instru-
mentation, priority networking, and traffic engineering;

o disaggregated memory (DM) replication frameworks assum-
ing the process fail-stop model [73], which implies perfect
failure detection and thus synchrony, as well as reliable net-
works [32, 49, 51, 84];

SoCC 2025, November 19-21, 2025, Online

4 Network =
1 rcle Leader Followers
SoC Host SoC Host
Control Control
SW App-] SW App.]
Clients FPGA FPGA
ela o s ->‘ Consensus engine |sssp ..;‘ Consensus engine ‘

Figure 1: Nano-consensus architecture across multiple nodes.

o recent works [4, 33, 58] on distributed process coordination
in the context of Byzantine failures [47] which (similarly to
DM works) take upper time bounds for commodity hard- and
software as a given without introducing any system support
to enforce these assumptions, and disregard network security
concerns like (distributed) denial of service attacks that one
could expect with such security-sensitive deployments;

e replicated variants of widely-used distributed applications
such as Kafka [1], Redis[69], and PostgreSQL [2].

Nano-consensus goes a step further by fully exploiting network
hardware support to actively clamp down on nondeterminism that
can hamper upper time bounds, in the context of benign pro-
cess crash failures. Unlike current synchronous software frame-
works [40, 71], which need disruptive, complex and error-prone OS
configurations risking to compromise the integrity of claimed syn-
chrony, Nano-consensus achieves better performance, determinism
and usability by running in a self-contained module on widely-
available FPGA-smartNICs. Tab. 1 shows that hardware reaches
2 orders of magnitude better stability in our long-running bench-
marks (cf. § 6 for setup). In short, Nano-consensus 1. runs as a
core coordination service on highly precise FPGAs of smartNICs
to achieve timely guaranteed process response times, 2. leverages
traffic engineering and priority scheduling and queuing for entirely
avoiding packets drops due to congestion thus ensuring timely pre-
dictable packet delivery, and 3. uses redundant communication for
shielding remote process interaction from transient network link
or switch failures. As a consequence, Nano-consensus can rely on
low, timely bounded response times for its own processes and on
timely bounded reliable (multicast) communication between them.

Note that other processes execute and communicate as normal,
and priorities ensure that network resources are not lost in absence
of actual Nano-consensus traffic. Nano-consensus interaction is set
up through a controller which is not a limitation for the targeted
service and respective applications, as these are typically long-
running services such as key-value stores.

3.2 Architecture

System overview. Fig. 1 shows Nano-consensus’s architecture in
a typical multi-node deployment. A node can be either a leader or
a follower, with only one leader being present at any time. Dur-
ing normal operation, requests from clients are forwarded to the
leader which starts a consensus instance and communicates with
the followers through the datacenter network. Our system is fault-
tolerant and ensures that a new leader is elected in case the old one
is faulty. Each node executes an exact replica of Nano-consensus

SoCC 2025, November 19-21, 2025, Online

4a Packet generator —

Host SoC Packet
DMA DMA FIFO Consensus parser
o~ core
st ¥)16
Packet processor (PP)
010

‘ Physical interfaces (PHY) ‘

Figure 2: Data flow through the hardware modules of the
consensus engine.

and is divided into three sub-systems with separate computational
units: a host server, an system on a chip (SoC) and an FPGA. The
latter two are connected via peripheral component interconnect ex-
press (PCle) and physically placed inside an off-path smartNIC [81],
which is itself attached to the host server via PCle. Nano-consensus
core logic is the consensus engine, which is entirely offloaded to
the FPGA hardware and directly attached to the network. The SoC
contains a control software layer which allows for dynamic recon-
figuration and monitoring of the consensus engine. Applications
using Nano-consensus are running on the host in isolation, only
receiving the outcome of a consensus instance. This architecture is
ideal to ensure separation of concerns, leaving the host CPU free
from costly packet processing tasks. However, it could be adapted
to on-path smartNICs (e.g. FPGA only, no SoC) with minor modifi-
cations.

Consensus hardware engine. Fig. 2 shows a more detailed view
of the consensus engine, outlining its components and a sample
data flow. Incoming packets are sent from the physical interfaces to
the programmable packet processor (PP) (1), which provides layer
2 and layer 3 switching functionality. The PP filters out packets
which do not match the Nano-consensus UDP port number and
forwards them to the host @ Matching packets immediately trig-
ger a notification to the consensus core module (2), needed for the
correct functioning of the consensus algorithm. The PP then routes
packets to one or more modules based on the Nano-consensus con-
trol settings and the payload content. One possible path is through
the packet parser which strips the relevant information and
sends it to the packet generator, which assembles a new packet
with software-configurable headers + payload and queues it in the
FIFO egress . This data path is executed exclusively in hardware,
enabling packet processing and consensus logic at line rate. The
second possible path is through the SoC: the PP forwards packets
to the control software which processes and queues them in

the egress FIFO queue . This mode enables operation when the
hardware path is switched off, and is particularly useful for batching
and intermittent operations. The third data path directly forwards
packets to the host to propagate the result of a consensus instance
to the application @ Finally, (5) the consensus core triggers send
notifications at regular intervals, dequeueing packets from the FIFO
queue, passing them to the PP and sending them to the wire (6).
This rate limiting functionality is core to our consensus algorithms
outlined in § 4.

Anon.

NaI}(o-tconsensus Priority [@ Consensus request
packe o
@& Other packet queues R Dropped packet
“ ’ %\% TEE > T
:I—TP Rate ‘ [AJAJATA] AIA
= J(limiter g i L = B S
NIC Switch

Figure 3: Nano-consensus sample communication in a sec-
tion of the network. Consensus requests from clients and
other packets can be dropped while Nano-consensus makes
its packets never exceed network capacity.

Communication. Nano-consensus uses UDP with IP multicast
for communication, combined with several techniques for reliability.
Packets are either created in software and piped to the egress FIFO
queue or a base packet is pre-filled and written to the FPGA memory
to be modified by the packet generator. Each process participating in
the consensus can belong to groups identified by unique multicast
addresses, where processes can dynamically join or leave. UDP
greatly simplifies hardware complexity compared to a TCP stack
and avoids re-transmission overhead which would increase jitter,
affecting interaction stability. Nano-consensus rate-limits traffic
inside multicast groups to prevent packets from being dropped
due to congestion which, alongside redundant links to cater for a
number of network failures, make the probability of packet loss so
low that it can be considered negligible for realistic uptimes, as we
will discuss shortly.

3.3 Stable interactions on network hardware

We substantiate how stable interactions (intended as communica-
tion + processing latency) can be achieved inside datacenters by
exploiting the predictability of programmable network hardware,
leading to reliable, low upper time bounds on message delivery
(>100x smaller than standard software configurations, cf. Tab. 1).

Deterministic processing in network hardware. The traditional
network stack is notoriously a bottleneck for high-throughput ap-
plications, leading to poor, unpredictable packet processing latency.
A large number of software approaches propose optimized data
paths [40, 44, 82] and scheduling policies [28, 56] to mitigate this
issue, achieving very low latency below some 99.x'! percentile or
claiming upper time bounds on communication for a specific sys-
tem setup [40]. Even if to a smaller extent, such systems still suffer
from consequences of the many sources of interference at the end-
host [40], causing costly context switches and related latency spikes.
Nano-consensus overcomes software unpredictability by offloading
all latency-critical logic to custom hardware on FPGA-smartNICs
which allows direct access to packets from the wire, bypassing
interference otherwise induced by resource contention in the PCle
bus and OS. The resulting custom circuit is dedicated exclusively
to processing Nano-consensus packets as soon as they arrive, lead-
ing to ultra-low, predictable, stable latency. Low-jitter processing
is also exhibited by similar hardware algorithms [10, 38] which,

Nano-consensus: ultra-fast, quorum-less coordination on the wire

however, focus only on low latency and use it to accelerate nor-
mal algorithm rather than building on top of stability. The only
limiting factor in FPGA-smartNICs algorithms is the frequency
at which the hardware can deterministically process packets. In
Nano-consensus this is given by the consensus core module syn-
thesised on Altera F2000X-PL which can handle up to 122 million
packets per second (Mpps), bandwidth which is largely sufficient
to saturate 100Gbps networks and beyond.

Controlled priority traffic for zero-congestion. The other cause of
unpredictable communication latency peaks and packet drops is
congestion due to traffic bursts exceeding network capacity. Fig. 3
shows how Nano-consensus prevents congestion by using traffic
engineering (TE) techniques to configure the network, while other
packets sent through the usual best-effort path where they can be
dropped or delayed. In short, we reserve highest-priority queues in
the hops connecting Nano-consensus nodes and apply rate limiting
at the NICs through the consensus core module (see Fig. 2). If the
input frequency of consensus requests coming either from clients or
the SoC is higher than the rate limiter allows, packets are dropped
before starting a new consensus instance. We rely on client re-
transmission for such cases. When requests go through the leader
node, they are multicast to the followers via highest-priority queues
at a rate which is pre-fixed below network capacity. Our TE ap-
proach also limits aggregation of multiple flows that might overfill
queues, in case non-fully overlapping Nano-consensus groups are
deployed. This is in practice achieved by decreasing the frequency
of the rate limiter of every node, as in previous work [30, 40, 71].

Scalability. Our system can also scale out without downtime
providing very strong availability (see § 6.4) since initialization
(TE setup and state transfer) can take place in the background (see
§ 5.2). Multiple applications can use a single Nano-consensus mod-
ule given they share the same set or a subset of processes, with the
only limit being rate limiter. For different overlapping sets of pro-
cesses, applications are required to use separate Nano-consensus
modules (one per set), which can be co-located on the same FPGA
up to ~100 modules with additional multiplexing logic.

Redundancy and safe exit for network failures. If unhandled, net-
work link or switch failures could compromise interaction stability
and make a remote process falsely suspect a failure of the sender.
This in turn could affect the consensus algorithm’s safety (cf. § 4) if
network failures partially affect Nano-consensus’s multicast (e.g.,
a link fails and only a subset of remote processes receives a packet
while others suspect the sender to have failed). Nano-consensus
exploits physical redundancy, commonly available in datacenter
network topologies, e.g., fat-tree topologies, to tolerate a number
of network failures. Since Nano-consensus nodes send exact copies
of a packet over every redundant multicast tree, they can detect
a network failure when they receive a smaller number of packets
than the number of trees, e.g., receiving only one packet with a
twofold redundancy. Once a network failure detection occurs, all
Nano-consensus nodes employ a safe exit, i.e., simply stop process-
ing consensus messages, to prevent additional network failures
from compromising the interaction reliability hence preserving
consensus safety. Nano-consensus can be additionally set to use

SoCC 2025, November 19-21, 2025, Online

network recovery mechanisms introduced in F10 [54], Hydra [18],
and FiDe [71] to quickly establish alternative redundant paths.

Reliability of stable interactions in perspective. Predictability of
modern network devices alongside established queuing engineering
techniques make the probability of a message being lost or delayed
beyond a conservative upper time bound so low in practice that
it can be considered negligible. In our extensively tested setup
(§ 6.2), this probability is 8.7 X 10~!2 in the worst case, i.e., once
every 40 days with an average throughput of 400Mbps. Multiple
network failures affecting all redundant paths at the same time
can break the reliability of synchronous interactions. However, this
is extremely unlikely in practice: recent estimates [71] based on
popular real-world network failure statistics [29] give a worst-case
probability of any two link or switch failures to occur once every
6 years in a 3-tiered fat-tree topology. Also, inconsistencies to the
consensus algorithm caused by multiple simultaneous failures or
delays occur only if these manifest in specific combinations (further
reducing probability of a safety violation) and can be prevented by
deployment, as we discuss in § 4.2. To put things into perspective,
TCP - widely regarded as reliable and used by several systems for
critical coordination as such (e.g. Zookeeper [35]) — has a higher
probability of a packet corruption going undetected. A popular
study [74] on a smaller sample base than in our experiments reports
that “the Ethernet CRC + TCP checksum will fail to detect errors
for roughly 1 in 16 million to 10 billion packets” (10~1° probability
in the best case, e.g., once every 2.9 days with an average throughput
of 400Mbps), with recent real-world cases being reported [77, 78].

4 QUORUM-LESS OPTIMAL CONSENSUS

This section outlines the algorithm behind the consensus core mod-
ule (Fig. 2). Unlike the vast majority of classical and modern consen-
sus algorithms adopted in real-world deployments, Nano-consensus
does not require a majority quorum of processes to operate, lead-
ing to a simple solution with optimal message complexity. This
novel approach is made possible by exploiting upper time bounds
of Nano-consensus’s system-supported stable interactions inside
the datacenter (cf. § 3.3).

4.1 Reliable sychronous broadcast (RSBCAST)

Properties. We define the primitive RSBCAST (which we use in
Alg. 3) to denote Nano-consensus’s communication mechanism
using timely interactions, IP multicast, redundancy and safety back-
stop. The primitive has an homonymous RsBcAsT downcall, DELIVER
and NET-FAULT upcalls. The interaction latency between sEND and
RECV events has upper time bound (A) given by the sum of the
maximum communication latency and the maximum processing
latency between any two nodes. RSBCAST has the usual properties
of uniform reliable broadcast (cf. [16]) plus an additional property
that messages which are RSBCAST are DELIVERed within Aj.

Algorithm. Alg. 1 specifies the reliable sychronous broadcast
mechanism. The sender sends a packet to every redundant IP mul-
ticast group G; € G; these groups correspond to disjoint trees con-
necting the same set of Nano-consensus nodes. A receiver starts a
timer once it receives the first packet: if less than |G| packets arrive
withing A, it means that either a network failure or packet drop

SoCC 2025, November 19-21, 2025, Online

Algorithm 1: Reliable sychronous broadcast (RSBCAST)

1 G« {G1,G2..Gp};
2 received «—

// redundant multicast groups

3 to RSBCAST(m):
4 foreach G; € G do

5 L SEND(m) to G;

6 upon Recv(m) from G;:

7 if received = () then

8 L START (timer, Af)

9 if received = G then

10 L DELIVER (m)
11 received <« received U {G;};

12 upon TIMEOUT (timer):
13 LNET—FAULT

has compromised the reliability of the channels. In that case (line
12-13), the upper layers are notified through the NET-FAULT upcall.
Otherwise, when a receiver RECVs a message from all redundant
multicast trees, RSBCAST safely DELIVERs the message. The correct-
ness of uniform delivery depends on the extremely high reliability
of stable interactions, IP multicast and redundancy mechanism,
with a higher number of redundant paths to be used as effective
mechanism to increase reliability. We report the probability of a
critical network failure impacting twofold redundancy a in § 3.3
and discuss how, in practice, only certain combinations of failures
impact the correctness of consensus in the next section.

4.2 Consensus core: LOWI

Nano-consensus’s core engine is optimized to execute multiple
consensus instances in series which can be easily used to implement
state machine replication (SMR), i.e., the most common use case for
consensus. We first specify our consensus algorithm dubbed one-
way imposition (OWI) in Alg. 2, then introduce its looped variant
for SMR in Alg. 3, dubbed looped one-way imposition (LOWI).

Properties. We define the uniform consensus specification below.
The primitive has a PrRoPOSE downcall and DECIDE upcall. OWI
satisfies the following:

Validity: 1f a process calls DECIDE with value v, then v was PROPOSEd
by some process.

Integrity: No process does DECIDE twice.

Termination: Every correct process eventually does DECIDE some
value.

Uniform agreement: No two processes DECIDE different values.

We assume that PrRoOPOSEd values are distinguishable, e.g., rep-
resenting requests or messages with unique identifiers, hence pre-
venting duplicate delivery. Like in § 4.1, the upper time bound Aj
denotes the maximum interaction latency between any two nodes.
Furthermore, all processes start within a fixed time Ay which con-
sists in the sum between the initial synchronization time and the
maximum bounded clock drift between any two nodes. We dis-
cuss how synchronization is implemented in practice in § 5.2. All

Anon.

handlers are assumed to execute uninterrupted, and, if multiple
handlers are enabled at the same time, they are triggered in a fair
manner.

Algorithm 2: One-way imposition (OWI). Uses RSBCAST.
All processes call PRoPOSE within a fixed time window A.,,.

1 leader «— miN(P)
2 proposals «— 0
3 decision «— L

'S

to PROPOSE (0):
5 proposals « proposals U {v}
6 if self = leader then
7 ‘ RSBCAST (DET (proposals)); // pick DETerministically
else
8 SEND (v) to leader
L START (timer, Ay + Ap)

10 upon TIMEOUT (timer) and decision = L:
11 P « P\ leader

12 leader «— miIN(P)

13 if self = leader then

14 | rsBcasT(DET(proposals))
else

16

15 SEND (v) to leader
START (timer, Ay + Ap)

17 upon RECV (v):

18 L proposals « proposals U {v}
19 upon DELIVER(0):

20 if decision = () then

21 L DECIDE (v)

decision « v

23 upon NET-FAULT (timer):
24 LQLJIT

OWI (Alg. 2). At initialization, every process is assigned an 1D
from 1 to n to establish a hierarchy, with the leader being the process
with the smallest 1D (line 1) and other processes being followers.
We use the variable self to refer to the process 1D of the executing
process. When the leader is correct, it uses RSBCAST to reliably
disseminate a value chosen deterministically (with DET()) from the
proposals set (lines 4-7). All processes DECIDE on the value im-
posed by the leader (lines 19-20). Note that a leader may or may not
have received proposals sent from other processes (line 8) depend-
ing whether it REcvs them before starting to pRoPosE. This does
not affect consensus properties since the proposals set contains at
least the leader’s value (preserving Validity) and once a value is
proposed, RSBCAST guarantees that it is DELIVERed by all correct
processes within Aj. The timeout of Ay + A (line 9) ensures that,
if the leader is correct, every correct process receives its imposed
message through RsBCAST before triggering leader election (lines
10-12). If the leader fails before triggering RSBCAST, all processes
will deterministically elect the next leader in the new round (i.e. at

Nano-consensus: ultra-fast, quorum-less coordination on the wire

Algorithm 3: Looped one-way imposition (LOWI). Uses
OWIL All processes start within a fixed time window A,,

1 pending «— 0
2 decisions « []
3 cins «— 0 // current consensus instance

4 lins < 0; // last consensus instance with a decision

5 to REQUEST (v):
6 L pending «— pending U {v}

7 upon Loop and cins = lins:

8 cins « cins+1
9 if pending # () then
10 PROPOSE (v) | v € pending
1 pending «— pending \ {v}
else
12 L PROPOSE (L) ; // heartbeat value

13 upon DECIDE (0):
14 if v = L then

15 ‘ cins « lins ; // no decision, rerun this instance
else

16 decisions[cins] « v

17 lins « cins ; // go to next instance

18 upon QUIT:
19 L exit Loop

TIMEOUT, lines 10-12). The algorithm proceeds until at least n — 1
timeouts (i.e. rounds) in the case n—1 failures occur and the process
with the largest 1D is the only correct process. Processes safely quit
if RSBCAST signals a network fault (NET-FAULT) since they cannot
guarantee that all processes have received the leader’s decision.

LOWI (Alg. 3). The full algorithm runs a series of synchronized
(within Ayy) consensus instances, takes REQUESTs from clients, PRO-
POSES them through OWI, and stores them into the decisions log.
Processes take REQUEST values asynchronously and store them into
the pending variable. In every synchronous round of the Loop, pro-
cesses check whether the current consensus instance has ended
with a decision through the cins and lins variables, which respec-
tively indicate the current consensus instance and the last consensus
instance in which processes DECIDEd (line 7). Note that OWI guar-
antees that all DECIDE in the same round even in the occurrence
of failures, preserving synchronization across multiple consensus
instances. In a “proposal” round, processes either PROPOSE a value
from the pending queue, or PROPOSE a heartbeat value (lines 7-12)
in case there are no pending proposals. This is a key mechanism
preventing non-leader nodes to time out on correct leaders. As a
consequence, processes might DECIDE heartbeat values, in which
case LOWI makes sure to repeat the same consensus instance (lines
13-15). Decisions of values coming from client requests are instead
added to the decisions log, and the algorithm moves on with the
next instance (lines 16-17). Note that Processes exit the Loor when
OWI calls QuIT in consequence of a NET-FAULT.

SoCC 2025, November 19-21, 2025, Online

Correctness. For Validity, OWI ensures that processes DECIDE
values from the leader’s proposals set (Alg. 2, line 5). In LOWI, these
can be either heartbeat values (L) or values previously PROPOSEd.
Only the latter are stored in the decisions log (Alg. 3, lines 14-15).
Integrity is guaranteed by line 20 in Alg. 2. Regarding Termination,
the TIMEOUT mechanism in OWI ensures that a correct leader will
propose within n — 1 rounds at most. To show Uniform agreement
we argue that only one process at any time can RSBCAST, i.e., there
can only be a leader for every consensus instance. This is ensured
by the timing guarantees of our system, namely upper-bounded
interaction latency Ay among Nano-consensus nodes, and the initial
synchronization window Ayy. The TIMEOUT of A+ Ay (Alg. 2, line
9), and the reliability of RSBCAST ensure that either all processes
DELIVER within a given time before the timeout, or the sender has
crashed hence the message will never be received.

Complexity and optimizations. OWI solves consensus in 1 mes-
sage delay in failure-free executions, but requires initial synchro-
nization to make sure all replicas start within Ay, which in practice
consists in at least another message delay. LOWI mitigates this by
synchronizing nodes only once at the beginning of the consensus
series, then maintaining synchronization by running back-to-back
consensus instances. This is the key mechanism to bridge asynchro-
nous client requests with efficient synchronous algorithm execution,
using heartbeats to maintain synchronization when requests are
delayed. OWI is more efficient than classical synchronous consen-
sus by Lynch [55] in which processes disseminate n? messages
per round and different correct processes might decide in different
rounds, not allowing for our “looped” optimization. To mitigate
excessive heartbeat traffic, pending proposals can be accumulated
by setting a loop period higher than the incoming proposal rate and
vice versa when a large number of proposals need to be “consumed”.
While it is likely that only the leader ends up proposing its values
in OWI, this is a common feature of almost all consensus/SMR
algorithms [7, 10, 31, 83] and it is mitigated by redirecting requests
only to the leader node. DET in Alg. 2 chooses non-heartbeat values
for efficiency.

RSBCAST and multiple network failures. RSBCAST mitigates net-
work failures with redundancy, leading to an extremely low proba-
bility (at worst once every 6 years, cf. § 3.3) of any multiple network
failures to affect all redundant trees. In reality, the actual probabil-
ity of such failures affecting consensus safety is even lower: only
network failures which create network partitions (whether tran-
sient or not) are critical, not any Furthermore, this risk is null
when redirecting client request to a leader and not to replicas
which is a common deployment adopted in Paxos/Raft -based algo-
rithms [7, 10, 46, 83]. As long as the leader continues its operation,
no requests are forwarded to other replicas, hence preventing uni-
form agreement breach by deployment.

5 IMPLEMENTATION

5.1 Development

We designed and implemented Nano-consensus on the F2000X-PL
Altera smartNIC [63], leveraging the on-board SoC and Intel Ag-
ilex 7 FPGA [6] for software/hardware co-design. The built-in PP

SoCC 2025, November 19-21, 2025, Online

LOWI LEADER
counter
TIMEOUT send
(register SW | D Toutput
SW register trigger
<] Lowl
counter
sw HEARTBEAT
register

recv input trigger

Figure 4: Simplified circuit schematics of LOWI. “SW” labels
define components configurable from software.

(refer to Fig. 2) was programmed to provide ingress packet classi-
fication and routing among the physical ports, the SoC, the host
and our custom hardware module. The latter was compiler onto the
board’s application stack acceleration framework (ASAF) module
and amounts to a total of 803 lines of code in System Verilog and
VHDL. Iterative testing for the RTL module was done with Mod-
elSim [61]. We developed the following software components to
complement the hardware module: a Rust CLI app for controlling
and monitoring (383 lines of code), PP Bash configuration scripts
(142 lines of code) and a high-performance thin layer in eBPF’s
XDP to provide application specific logs (412 lines of code).

5.2 LOWI system integration

Fig. 4 shows how LOWI is synthesized on the consensus core mod-
ule and interacts with the other modules via triggers. In the follow-
ing we describe how LOWI is integrated in our design on Altera
F2000X-PL FPGA-smartNICs. Please see § 3 for architecture details.

Initial synchronization. The start of the sequence simply consists
in a “start” message which the designated leader send to the follow-
ers in order to activate their receive input trigger, which resets and
start the LOWI counter. The timeout register is previously set to
at least double the maximum latency observed in the system plus
the maximum clock drift, i.e., the initial synchronization window
Aw = Aj, hence TIMEOUT duration > 2Aj + drift. We rely on
modern FPGAs’ very robust clocks with negligible bounded drift
(as assumed by recent systems, e.g., [31, 40, 71]).

Main operation. After setting FPGA memory and registers from
software, clients send consensus requests to the leader node di-
rectly on the FPGA-smartNIC as typically done in other consensus
setups, e.g., Waverunner [10]. The on-board PP routes requests to-
wards the packet parser (cf. Fig. 2), which extracts the payload and
passes to the packet generator which prepares a PROPOSE packet
and enqueues it into the FIFO. Once the LOWI counter of the leader
triggers the next send signal (AND logic comparison among LOWI
counter, blue registers and heartbeat register in the circuit), the PP
is set to RSBCAST the decision to the followers, the host DMA and
as well as replying directly to the clients with an “OK” response.
This ensures minimal server response latency since the packet has
to only do a loopback inside the FPGA. Packet reception at the
followers (REcV) triggers LOWI, resetting its counter and prevent-
ing it from reaching the value of the timeout register previously
set from software. The packet is forwarded up the host DMA (i.e.,

Anon.

via DECIDE) without further processing. Note that the reception of
requests at the leader does not trigger a LOWI receive (disabled by
software) as it would compromise the timeliness of the loop period.
The LOWI counter is reset after every successful send, creating the
loop. Note that the loop (i.e., heartbeat register in Fig. 4) period
might be set as small as the FPGA clock allows (~8ns) order to keep
multiple consensus instances in flight for very high throughput.

Heartbeats and leader election. The LOWI circuit triggers a send
signal even if there are no incoming requests and the FIFO is empty.
In such case, a pre-filled, static heartbeat packet (L in Alg. 3) is sent
instead from memory, ensuring that followers never timeout on
a leader that is still alive. Upon leader failure, the LOWI counter
in the follower hits the timeout value, outputting a signal which
increases the leader counter. This constitutes our deterministic
leader election, since we assign monotonically increasing 1ps to all
processes during the initial configuration. The follower with 1p =
leader 1D + 1 is elected as next leader and starts Loop.

Flawless joining in state machine replication. New processes can
only join an existing cluster as followers without disrupting an
on-going execution. At the start of a join procedure, a follower sets
itself in a “joining” state, enables the consensus engine, and starts
logging the decision values of the running consensus instances. In
parallel, the control software sends a request to any other node
asking for the current state and the latest consensus instance it
has recorded. After the state transfer, the new node will apply
previously recorded changes starting from ¢ + 1 and set itself as
“active”. Before this last step it might be necessary to increase the
timeout value in case the follower is “further away” than any other
followers in the group. This can also be achieved by the software
layer through a new consensus instance. Reducing the timeout
value would require halting the system, but it is unlikely required
as Nano-consensus can start from ultra-low timeout values.

6 EVALUATION

We evaluate Nano-consensus by comparison with state-of-the-art
services and applications, addressing four research questions:

RQ1: How stable and reliable are Nano-consensus remote pro-
cess interactions?

RQ2: How well does Nano-consensus perform?

RQ3: What is the impact of failures and joins on Nano-consensus
availability?

RQ4: How and by how much does Nano-consensus improve
real-world applications?

6.1 Methodology

Evaluation cluster. We implement and evaluate Nano-consensus
in a production datacenter of a major cloud service provider. The
evaluation cluster consists of 3 Altera F2000X-PL [63] attached
to 2 Dell R740 servers, each equipped with 2 Intel Xeon Gold
6138 at 2.00GHz (40cores, 80 threads) and running CentOS 8 [17].
F2000X-PL’s SoCs are equipped with Intel Xeon D-1736 CPUs at
2.30GHz (8 cores, 16 threads) running Rocky Linux 8.9[70]. For most
tests, we connect both 100Gbps QSFP28 ports of every F2000X-PL
to a 100Gbps TOR switch. To benchmark other applications, we use
Mellanox ConnectX-4 100 GbE [57] (making sure that bandwidth

Nano-consensus: ultra-fast, quorum-less coordination on the wire

—— Nano-consensus — AF XDP
UDP —— RDMA

=)

J—
(=]
L

=

|

Oth 95th 99th
Percentile (# of packets)

—
=]
L

Latency (ns)

99.99th 100th

Figure 5: Maximum interaction (communication + process-
ing) latency over 40 days (115 billion packets).

is not limiting maximum achievable throughput), connected to the
same switch. For multi-switch evaluation we use an additional clus-
ter of 2 Cloudlab [26] x1170 servers, connecting their ConnectX-5
NICs to a number of Dell s4048 type switches, as outlined later.

Comparison. We compare Nano-consensus with three different
OS-bypass datapaths, namely FPGA-smartNICs, RDMA, and eBPF
XDP, chosen for their relevance and widespread adoption. For each
technology, we compare Nano-consensus with the following state-
of-the-art consensus systems:

Waverunner [10], hardware-accelerated Raft on Alveo U280[11]
FPGA-smartNICs, the fastest SMR module to our knowledge;

Electrode [83], XDP-based consensus service used to implement
viewstamped replication [52];

Mu [7], a state-of-the-art RDMA-based consensus algorithm.

We also compare the integration of Nano-consensus into two
widely used applications: Redis [67], a distributed key-value store
and Zookeeper [35] against their native performance. For Redis, we
also compare against RedisRaft [68], an official module developed
by RedisLabs using Raft for SMR.

6.2 ROQ1: interaction stability

Our first experiments evaluate stability and reliability of time bounds
on interaction latency, a core aspect of Nano-consensus’s design.

Long-running latency. The main benchmark consisted in run-
ning a simple ping-pong protocol between the leader and the
two followers and computing the worst leader-to-follower, one-
way latency for every round. We ran our benchmark for 40 con-
secutive days collecting measurements for a total of 115 billion
packets, more than 650X the amount of similar stability evalua-
tions [40] and 56X the amount used in a widely-cited TCP relia-
bility study [74]. Nano-consensus packets were sent at a constant
throughput of ~400Mbps through Nano-consensus’s PP. For each
packet, we logged both Nano-consensus latency and UDP software
latency at the SoC, in order to show the cost of traversing the
network stack. We also evaluate latency of RDMA Unreliable Con-
nection (UC, UDP equivalent) and XDP XSK sockets through the
same ping-pong test, but using a much smaller sample base of 10
million packets (giving them an advantage over Nano-consensus).
We use stress-ng [75] and iPerf [37] to generate periodic spikes
of maximum CPU and network utilization. Fig. 5 shows the results.
Nano-consensus exhibits the lowest and the most stable latency for

SoCC 2025, November 19-21, 2025, Online

1 Nano-consensus [AF XDP
UDP [RDMA
2 10° 4
>
g 10° 3 l
<
— S
1 04 i ° ©
2 3 4

Number of swithches

Figure 6: Interaction latency across multiple switches. Hori-
zontal dashes represent median values, whiskers 0.01t" and
99.99th percentile latency, circles are outliers.

100% of the measured packets with an average latency of 1.41us
and a maximum of 1.48us and no packet loss. All other approaches
show a sharp increase in maximum latency at the tail of more than
100X, indicating the limits of software approaches beyond some
99.x percentile, especially if we consider that they were run for a
fraction of the time only. This benchmark showcases the interaction
stability of modern datacenter network hardware, which makes the
probability of failure (breaking an upper time bound) smaller than
services that are widely considered reliable, e.g., TCP’s detection
of corrupted packets (TCP + Ethernet CRC checksum, see § 3.3).

Multi-switch and packet loss. We also run two additional mi-
crobenchmarks in the CloudLab [26] setup to evaluate the stabil-
ity of hardware processing and Nano-consensus communication
layer in the core of the network. We manually reserve the highest-
priority queues in the switches and use Mellanox ConnectX-5 NIC
hardware timestamp [60] to evaluate the FPGA-smartNIC data-
path, which is equivalent to Nano-consensus timestamps in the
consensus engine. We use the previously mentioned ping-pong ap-
plications with varying network load generated with iperf3 [37].
For this experiment, the switches are connected in series with two
nodes connected at opposite ends, so a packet must traverse all
hops. Fig. 6 shows the effects on latency of scaling to 2, 3 and
4 switches under minimal network traffic. The figure confirms
Nano-consensus’s stability: each switch adds around 4ps latency,
respectively 10.5 + 0.15ps, 14.4 + 0.2ps and 19.6 + 0.25us average
with jitter (intended as max - min) within the error value. Other
technologies show much higher jitter in the order of hundreds of
us. Interestingly, the average of RDMA and XDP is comparable or
even smaller than Nano-consensus, which can be explained by the
batching and interrupt coalescing adopted by the former two to
save the CPU from costly frequent interrupts, resulting in peaks
of latency followed by a long series of packet with latency that
is shorter than the wire speed. However, given their high jitter,
these approaches are unsuitable for practical synchrony. The sec-
ond microbenchmark (Fig. 7) compares packet loss with varying
network load between Nano-consensus path and the normal net-
work path depicted in Fig. 3, in the 4-switch topology. Here we
can observe the effect of highest-priority queue reservation and
rate limiting: normal traffic is dropped by the switches and end-
hosts while Nano-consensus packets are never dropped. Note that

SoCC 2025, November 19-21, 2025, Online

x

2 201 -4 Nano-consensus

=]

- normal path

2

&

A~ 0 ,l—,,f,_.* * .I**....;.* * **

20 40 60 80 100 120
Network load %

Figure 7: Comparison of packet loss between

Nano-consensus packets and normal packets at increasing
network load. Both flows go through the same NICs
and switch. Thanks to rate limiting and traffic priority,
Nano-consensus packets are never lost, even when the
incoming traffic exceeds network capacity (120%).

consensus requests coming from the client can be dropped by the
consensus engine rate-limiter, but they are accounted towards the
normal path as they are not within the Nano-consensus domain.

6.3 RQ2: consensus performance

Our second set of benchmarks aims to evaluate latency of consen-
sus instances at increasing throughput with a traffic generator to
test the limit of our system. Since all compared approaches use a
leader-based consensus algorithm, we measure the latency from
when the leader accepts a PROPOSE request to when it DECIDE as
well as the end-to-end latency at the client side for fair compar-
ison (compared approaches are evaluated in the same manner).
Clients send requests directly to the leader using small random
packets — 50B for Nano-consensus and Waverunner and 64B for
Mu and Electrode, disadvantaging the former two approaches for
total goodput (i.e. payload vs packet headers). The packets include
44B of Ethernet, IP and UDP headers, chosen for fair comparison
to Waverunner’s evaluation [10]. Unlike Mu and Electrode, we do
not deploy Waverunner due to the source code being unavailable.
Instead, we report Waverunner’s results from their paper [10], us-
ing an identical network setup, and only substitute the RTT of our
system, leaving the throughput as it is. We include one consensus
request per packet with minimal payload size, intentionally avoid-
ing client-side batching (which would trivially increase throughput
for all appreaches) to show the base performance of every approach.

Throughput and network utilization. Fig. 8 shows median through-
put results in terms of consensus instances per s. Nano-consensus
achieves 62.4 Mpps using the DPDK testpmd tool [25] with receive-
side scaling over 4 SoC cores enabled in F2000X-PL for high- perfor-
mance software reception. The value, limited to avoid packet loss
in software, is lower than Nano-consensus Nano-consensus’s core
processing rate (121Mpps), i.e. the theoretical bottleneck of the
system; fine-grained performance tuning of the DPDK testpmd
is likely to further increase software throughput [24] up to net-
work bandwidth saturation (100Gbps). Nano-consensus improves
over Waverunner, the fastest consensus system in literature, by
~2.4x. With both systems using FPGA-smartNICs and only being
limited by the processing speeds of the hardware modules and
by the underlying network bandwidth, Nano-consensus’s perfor-
mance improvements come from its algorithmic advantage over
quorum-based approaches. Waverunner uses Raft which adds n — 1

10

Anon.

Table 2: Maximum goodput achievable with relative network
utilization for small requests. We assume 2-level redundancy
for both approaches.

Packet size Maximum Leader
(44B header) goodput bandwidth
(200Gbps)
Nano-consensus 50B 2.99 Gbps 24.96%
Waverunner [10] 50B 1.25 Gbps 50%
40 1
- —&— Nano-consensus
E‘;} Waverunner
2 20 A -A- mu
]
5 'A —eo— clectrode
0 - T T T T T T T
0 10 20 30 40 50 60

Consensus instance rate (Mpps)

Figure 8: Consensus performance measured at the leader.
Measurements at clients add an additional ~40us for every
approach due to client-server RTT.

(vs 0 for Nano-consensus) acknowledgment messages for the leader,
dramatically impacting its bandwidth usage in the network which
Waverunner saturates at 1.25% goodput/single link utilization ratio,
as shown in Tab. 2. Nano-consensus achieves a strongly increased
goodput of 12% (~4.8x) with only twofold network redundancy,
leaving additional room for 75.1 Gbps at the same rate, which could
be achieved with client-side or server-side batching by increas-
ing the payload by 150B (minus the additional Ethernet fields®).
Software-only approaches exhibit similar results as Waverunner
since they are also using acknowledgements, and furthermore can-
not saturate the network bandwidth with small requests (Fig. 8)
since they limit software packet processing overhead with batching
in order to keep CPU utilization low.

Latency. Nano-consensus exhibits a constant median latency of
1.03us (Fig. 8), limited by the loopback speed of F2000X-PL NIC
through our custom hardware module. It improves over by over
~3.82x w.r.t. Waverunner’s constant latency, demonstrating the
stability of FPGA-smartNIC-based hardware processing. Additional
testing shows that packet sizes up to 1500B marginally increase
the processing latency by 10%, while the 99th percentile latency
is within 3% for hardware approaches. Mu and Electrode show
5.38x and 7.39% higher latency respectively and sharp increases
when approaching their throughput limit, following a “hockey stick”
pattern. For completeness, we performed the same measurements
from the client side to obtain the end-to-end latency from a client
perspective. Clients add an additional ~40us on average for all
approaches, corresponding to the RTT between the clients and the
leader in our setup (both connected to 1 TOR switch).

37B preamble, 1B packet start delimiter and 12B inter-packet gap

Nano-consensus: ultra-fast, quorum-less coordination on the wire

Table 3: Leader election and downtime resulting from a new
follower joining an existing cluster. Slanted numbers are
taken from respective publications and blank values were
not addressed therein. Time values are in ps.

Tolerated Failover Downtime
failures latency on node
(50th/99thy join
Nano-consensus n—1 2/2 0
Consensus in a Box [38] L”T_IJ 60/60 2E5
Waverunner [10] L"T_IJ 1E6/1E6 2E5
uKharon [31] (2] 50/139

6.4 RQ3: fault tolerance and availability

We evaluate Nano-consensus’s fault tolerance by injecting failures
at the leader of a cluster, which results in a leader election round in-
volving no explicit communication; followers simply time out when
they stop receiving messages from the leader (data or heartbeats).
Whilw follower failures do not cause downtime in any of the com-
pared approaches, a substantial gain of Nano-consensus is that it
tolerates f = n—1 processes failures while compared quorum-based
approaches require 2f+1 processes, as shown in Tab. 3. We evaluate
the downtime impact of a new follower joining an existing cluster.
Our LOWTI algorithm (Alg. 3) is designed for high-availability and
can flawlessly react to changes in the cluster, as discussed in the
following paragraphs.

Leader election. Unlike common solutions, our timeouts are op-
timal as they can rely on the stable latency (A; = 1.41ps) from the
communication layer and precision of the hardware sending rate
(TLoop = 8ns), and therefore can be safely set at A; + Troop We
choose 2ys in our experiments (including a safety margin), achiev-
ing a 30X improvement against Consensus in a Box [38] and 25X
over uKharon [31], respectively the fastest hardware and software
solutions to our knowledge, as revealed by Tab. 3. Nano-consensus
also improves over Waverunner’s conservative timeout by 500000x.
However, we believe that Waverunner’s performance is very likely
to sustain more aggressive timeouts.

Follower joins. Another benefit of LOWI is that it enables fol-
lowers to join an existing cluster without disrupting the ongoing
operation. For this evaluation we use Nano-consensus to imple-
ment a basic SMR service which uses a leader to deterministically
order incoming requests, run a consensus instance with the request
number and writes it to a log. Tab. 3 shows that Nano-consensus
achieves 0 downtime thanks to the parallel state transfer strategy
described in § 5.2. Once again, this results in a substantial advantage
over quorum-based approaches which need to halt operations and
wait for a follower to synchronize its state with the leader (200ms
in Waverunner and Consensus in a Box evaluations).

6.5 RQ4: Real-world applications

Our final sets of benchmarks analyzes Nano-consensus’s perfor-
mance as part of Redis and Zookeeper. We evaluate latency and
throughput from external clients connected to our 3-node cluster
via a TOR switch. As for previous benchmarks, all requests are

11

SoCC 2025, November 19-21, 2025, Online

Redis —#—Redis-NC
@ RedisRaft —&—Zookeeper

Zookeeper-NC

—~

% L L — @ 5 1000; e

=

S ol T

< 0.14¢.. =]

45- \4 (T YT °® B3, 100 3

. =

B 001 —a—0uw | o — il

& o

7 ; ; ; v 10 ; ;
1 2 3 1 2 3

Nodes Nodes

Figure 9: SET request latency and throughput of Redis and
Zookeeper with different replication algorithms and num-
bers of nodes. y-axis is logarithmic.

forwarded directly to the leader. For both applications, we build
custom sequential (i.e. blocking on server response) clients which
send Nano-consensus requests to the cluster, which our system
safely replicates. The leader then acknowledges the request to the
client and forwards to the respective hosts at the same time, allow-
ing the application to process requests in the background. We use
a thin XDP layer and receive-side scaling on the host to efficiently
process incoming requests and log them into in-memory maps. We
modify Redis and Zookeeper to read from these logs to process re-
quests and refer to these versions as Redis-NC and Zookeeper-NC
respectively. We evaluate only SET requests but not GET requests,
as all approaches would simply return the requested value, adding
no overhead to native performance.

Results. Fig. 9 depicts throughput (left) and latency (right) at
small scale n = 1, 2,3. (At larger scales the performance of com-
pared approaches degrades quickly.) Nano-consensus applications
outperform the native SMR approaches RedisRaft and Zookeeper
by at least 10X throughput and at least >11.6x lower latency. Per-
formance gains come from the fast hardware response directly
from the FPGA-smartNIC which avoids traversing the server net-
work stack, achieving improvements even on original Redis un-
replicated by 4.7x throughput and 11.6x latency. Both Redis-NC
and Zookeeper-NC show very close performance since they use the
same custom UDP clients. These have suboptimal packet processing
capabilities which limits maximum throughput to 846Kpps, leaving
a lot of performance on the table as shown by the results achieved
in § 6.3 with the DPDK test suite. Further engineering effort (e.g.
using DPDK, RDMA) could easily bring the performance up to tens
of Mpps as shown by several works [24, 28, 44]. The obtained re-
sults are a good representation of Nano-consensus benefits with an
average programming effort. In addition, note that the fault toler-
ance of Nano-consensus is increased, so for instance to be able to
tolerate f = 2 failure(s) the performance of Nano-consensus-based
Zookeeper on n = 3 nodes would have to be compared to that of
original ZooKeeper on n = 5 (cf. Tab. 3).

SoCC 2025, November 19-21, 2025, Online

7 NANO-CONSENSUS IN THE BIGGER
PICTURE

We position Nano-consensus in a broader context delineating where
and how it should be used, its benefit-cost tradeoff and future work.

Application notes. Nano-consensus is designed for datacenters
and relies on network predictability, programmability, and speed. It
primarily targets highly available core services with high through-
put and low latency requirements, but can be also used as accelera-
tor to efficiently “consume” a large volume of accumulated requests
when latency is not a primary concern. The latter scenario allows
for high-level traffic scheduling based on network utilization, e.g.,
intermittent enabling of Nano-consensus engine to compensate
external, bursty traffic, as well as mitigating the overhead caused
by heartbeat messages. Nano-consensus is best used in combina-
tion with a high-performance packet processing software layer to
avoid throughput limitation (e.g., see UDP clients in § 6.5) or cause
unwanted packet loss. Several modern systems such as eRPC [44],
DPDK [24], or eBPF (see server-side software layers in § 6.3 and
§ 6.5) can easily reach 10Mpps per core, especially considering that
Nano-consensus takes away the send overhead of proposal mes-
sages. Additional engineering effort in implementing a batching
module aggregating multiple requests together as done by Waverun-
ner [10] would also greatly mitigate the pressure on the endhost.

Resource footprint. One of the main benefits of using smartNICs
is alleviating the burden on the host CPU. Nano-consensus takes
on packet processing and all consensus logic, leaving only asyn-
chronous reception to the host (i.e. which can be deferred at later
times hence relieved from latency and throughput requirements).
In terms of FPGA footprint, LOWI uses less than 1% of the available
resources in the F2000X-PL board, leaving room for 100 equiva-
lent modules available for scaling up. Nano-consensus’s highest-
priority queue reservation can be shared with when using other
concurrent high-priority services by decreasing Nano-consensus’s
sending rate. Moreover, explicit resources reservation is often in-
trinsic to the deployment of highly available core services[27, 85]
to avoid co-locating too many other communication-intensive pro-
cesses. The same applies for network redundancy, which is also
commonly available by default in datacenter network topology
(e.g., fat-tree). Benefits of redundancy and resource reservation can
easily outweigh the cost of resource reservation, as shown in § 6.3.

8 RELATED WORK

Coordination with stable interactions. Traditionally, distributed
systems are designed assuming that messages can be arbitrarily de-
layed by the network and the packet processing stack. This common
belief is challenged by the rise of more programmable, precise and
high-performance networks and endhosts. A number of systems
assume stable communication and stable processing as a given for,
e.g., optimal weaker failure detectors [8], coordination primitives
like leader election [72], or even synchronous BFT and blockchain
algorithms [5, 33, 53] on top of the classical software stack, without
providing any concrete underlying system to enforce such assump-
tions. Seminal work on deterministic distributed processes was
introduced by DDOS [34], however with significant overhead in its
remote process interaction. X-Lane [40] and FiDe [71] introduce

12

Anon.

a communication layer relying on programmable networks and
process isolation, resulting in upper time bounds in interaction
which the authors use to accelerate a Raft-based consensus ser-
vice. However, this approach requires a lot of OS fine-tuning which
can be easily misconfigured affecting claimed interaction stability.
Nano-consensus takes a step further by pushing logic to network
hardware, dramatically reducing interaction jitter and using it to
devise a custom consensus algorithms with optimal complexity.

Distributed algorithms on network hardware. Consensus in a
Box [38] is a seminal work which pushes Zookeeper Atomic Broad-
cast (ZAB) off the critical path by fully porting it to FPGA. Waverun-
ner [10], the most recent and fastest work to our knowledge, takes
a different approach and moves only the failure-free operations of
Raft onto FPGA-based smartNICs, leaving failover routines to the
software. Paxos in the NIC [14] proposes a high-level abstraction
to offload Paxos-like consensus algorithm on the NIC with quanti-
tative analysis to prove its benefits and an early-stage prototype
with limited evaluation. NanoPU [36] proposes a more generic dat-
apath for low-latency communication by a custom communication
channel which writes directly to the CPU registers, bypassing PCle
bus and OS jitter sources. While the authors simulate their design
with Raft, NanoPU does not provide algorithmic novelty and does
not provide a physical implementation. Thanks to its novel design
on stable interaction and optimal algorithm (e.g., with respect to
classical synchronous consensus [55]), Nano-consensus fully ex-
ploits hardware properties and uses an optimal consensus algortihm
improving over Waverunner throughput, latency and availability.

Fast software packet processing. High tail-latency of a service can
impact client retention and cause loss of revenue [19, 20, 79]. This
led to the development of a plethora of systems which optimize tail-
latency for datacenter remote procedure calls through specialized
networking stacks at the endhosts [13, 21, 28, 44, 44, 50, 64, 65, 82].
These works achieve ps tail-latency through optimal endhost packet
processing but fail to prevent outliers beyond the 99.xth percentile.
QJump [30] leads the way to achieve minimal, stable tail-latency in
networks but does not consider jitter at the endhost, leading to the
same issue. Nano-consensus exploits a custom hardware design on
FPGA-smartNICand reservation of priority queues in the network
to achieve ultra-stable interactions and server-response with 100th
percentile tail-latency of as low as 1.03ps, outperforming software
state of the art in latency, throughput and failover time.

9 CONCLUSIONS

We propose Nano-consensus, a hardware-supported consensus en-
gine which runs on FPGA-smartNICs. Unlike common approaches
accelerating existing algorithms, Nano-consensus exploits and sup-
ports the stability of network hardware to introduce a novel con-
sensus primitive which is efficient for series of consensus instances.
Nano-consensus provides optimal message complexity and can run
as fast as the underlying network allows with ns-scale latency,
outperforming state-of-the-art hardware and software consensus
implementation by 3.82x and goodput by 4.8%, substantially im-
proving availability upon failures.

Nano-consensus: ultra-fast, quorum-less coordination on the wire

REFERENCES

(1]

[9

=

[10]

[11]

[12]

[13]

[14

[15

[16]

[17]

[18]

[19

[20]

[21]

[22]

[23]

[24]

Apache Kafka Synchronous replication. https://cwiki.apache.org/
confluence/display/kafka/kafka+replication#:~:text=In%20primary-
backup%20replication%2C%20the, write%20to%20the%20remaining%20replicas.
Online; accesses 10-Jan-2025.

Synchronous replication in postgresgl. https://www.crunchydata.com/blog/
synchronous-replication-in-postgresql. Online; accessed 10-Jan-2025.

IEEE 802.3. Ieee draft standard for ethernet amendment: Media access control
parameters for 800 gb/s and physical layers and management parameters for 400
gb/s and 800 gb/s operation. IEEE P802.3df/D3.0, July 2023, pages 1-286, 2023.
Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync
HotStuff: Simple and Practical Synchronous State Machine Replication. In 2020
IEEE Symposium on Security and Privacy (SP °20), volume 1, pages 106-118, 2020.
Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Optimal good-case latency
for rotating leader synchronous bft. In 25th International Conference on Principles
of Distributed Systems (OPODIS 2021), 09 2021.

Agilex™ 7 FPGA and SoC FPGA. https://www.intel.com/content/www/us/en/
products/details/fpga/agilex/7 html. Online; accessed 14-Jul-2025.

Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,
Athanasios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond
applications, November 2020.

Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
On implementing omega in systems with weak reliability and synchrony assump-
tions. Distributed Computing, 21(4):285-314, 2008.

Alibaba Cloud ECS. Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances
. https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-
a-service-instances_594057. Online; accessed 10-Jul-2025.

Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho, Michael Ferdman, Peter
Milder, and Shuai Mu. Waverunner: An elegant approach to hardware acceler-
ation of state machine replication. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 357-374, Boston, MA, April
2023. USENIX Association.

Xilinx alveo 280 product frief. https://www.xilinx.com/content/dam/xilinx/
publications/product-briefs/alveo-u280-product-brief.pdf. Online; accessed 14-
Jul-2025

Amazon EC2 F2 Instances. https://aws.amazon.com/ec2/instance-types/f2/. On-
line; accessed 10-Jul-2025.

Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. The ix operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane. ACM Trans.
Comput. Syst., 34(4), dec 2016.

Giacomo Belocchi, Valeria Cardellini, Aniello Cammarano, and Giuseppe Bianchi.
Paxos in the NIC: Hardware Acceleration of Distributed Consensus Protocols.
In 2020 16th International Conference on the Design of Reliable Communication
Networks DRCN 2020, pages 1-6, March 2020.

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif
Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam
Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste, Burkhard Ringlein, Jakub
Szefer, Ahmed Sanaullah, and Russell Tessier. The future of fpga acceleration
in datacenters and the cloud. ACM Trans. Reconfigurable Technol. Syst., 15(3),
February 2022.

Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable
and Secure Distributed Programming. Springer Publishing Company, Incorporated,
Heidelberg, Germany, 2nd edition, 2011.

Centos - download. https://www.centos.org/download/. Online; accessed 14-Jul-
2025.

Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li. Hydra:
Serialization-Free network ordering for strongly consistent distributed applica-
tions. In 20th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI ’23), pages 293-320, 2023.

The Cost of Latency. https://perspectives.mvdirona.com/2009/10/the-cost-of-
latency/. Online; accessed 14-Jul-2025.

OR Forum—The Cost of Latency in High-Frequency Trading. https://www.jstor.
org/stable/24540485. Online; accessed 14-Jul-2025.

Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet: Ni-driven tail-
aware balancing of ps-scale rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 19, page 35-48, New York, NY, USA, 2019. Association for
Computing Machinery.

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos made
switch-y. SIGCOMM Comput. Commun. Rev., 46(2):18-24, may 2016.

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. NetPaxos: consensus at network speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15, pages
1-7, New York, NY, USA, June 2015. Association for Computing Machinery.
Intel Ethernet’ s Performance Report with DPDK 23.03. https://fast.dpdk.org/
doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf. Online; accessed

13

[25

[26

[27

[29

[30

[31

[32

[33

[34

[35

(39]

S
=

(41

[42

[43

[44

[45

[46

SoCC 2025, November 19-21, 2025, Online

14-Jul-2025.

DPDK testpmd app. https://doc.dpdk.org/guides/testpmd_app_ug/. Online;
accessed 14-Jul-2025.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 1-14, July 2019.

Etcd hardware reccomendations. https://etcd.io/docs/v3.5/0p-guide/hardware/
#network. Online; Accessed 14-Jul-2025.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan:
Mitigating interference at microsecond timescales. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 281-297. USENIX
Association, November 2020.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network
failures in data centers: measurement, analysis, and implications. SIGCOMM
Comput. Commun. Rev., 41(4):350-361, August 2011.

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues Don’t matter when
you can JUMP them! In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15), pages 1-14, Oakland, CA, May 2015. USENIX
Association.

Rachid Guerraoui, Antoine Murat, Javier Picorel, Athanasios Xygkis, Huabing Yan,
and Pengfei Zuo. uKharon: A membership service for microsecond applications.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages 101-120,
July 2022.

Zhisheng Hu, Pengfei Zuo, Yizou Chen, Chao Wang, Junliang Hu, and
Ming-Chang Yang. Aceso: Achieving Efficient Fault Tolerance in Memory-
Disaggregated Key-Value Stores. In ACM SIGOPS 30th Symposium on Operating
Systems Principles (SOSP "24’), page 127-143, 2024.

Kaiwen Huang, Ronghui Hou, and Yingming Zeng. Lwsbft: Leaderless weakly
synchronous BFT protocol. Computer Networks, 219:109419, 2022.

Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. Ddos: tam-
ing nondeterminism in distributed systems. SIGARCH Comput. Archit. News,
41(1):499-508, mar 2013.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free coordination for internet-scale systems. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10). USENIX Association, June 2010.
Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz,
Changhoon Kim, and Nick McKeown. The nanopu: A nanosecond network stack
for datacenters. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 239-256. USENIX Association, July 2021.

iPerf tool. https://iperf.fr/. Online; accessed 14-Jul-2025.

Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko Vukolic. Consensus in
a box: inexpensive coordination in hardware. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation, NSDI'16, pages
425-438, USA, March 2016. USENIX Association.

Joseph Izraelevitz, Gaukas Wang, Rhett Hanscom, Kayli Silvers, Tamara Silber-
gleit Lehman, Gregory Chockler, and Alexey Gotsman. Acuerdo: Fast Atomic
Broadcast over RDMA. In Proceedings of the 51st International Conference on
Parallel Processing, ICPP °22, pages 1-11, New York, NY, USA, January 2023.
Association for Computing Machinery.

Patrick Jahnke, Vincent Riesop, Pierre-Louis Roman, Pavel Chuprikov, and Patrick
Eugster. Live in the express lane. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 581-597, July 2021.

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Mae Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast State Machine Replication for Cloud Services. ACM Transactions
on Computer Systems, 36(2):4:1-4:49, April 2019.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT coordination. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI
18), pages 35-49, Renton, WA, April 2018. USENIX Association.

L Johnsson and G Netzer. The impact of moore’s law and loss of dennard scaling:
Are dsp socs an energy efficient alternative to x86 socs? Journal of Physics:
Conference Series, 762(1):012022, oct 2016.

Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be
general and fast. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1-16, Boston, MA, February 2019. USENIX
Association.

Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive survey on
p4 programmable data plane switches: Taxonomy, applications, challenges, and
future trends. IEEE Access, 9:87094-87155, 2021.

Marios Kogias and Edouard Bugnion. HovercRaft: achieving scalability and
fault-tolerance for microsecond-scale datacenter services. In Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys 20, pages 1-17,
New York, NY, USA, April 2020. Association for Computing Machinery.

https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://cwiki.apache.org/confluence/display/kafka/kafka+replication#:~:text=In%20primary-backup%20replication%2C%20the,write%20to%20the%20remaining%20replicas
https://www.crunchydata.com/blog/synchronous-replication-in-postgresql
https://www.crunchydata.com/blog/synchronous-replication-in-postgresql
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7.html
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/alveo-u280-product-brief.pdf
https://aws.amazon.com/ec2/instance-types/f2/
https://www.centos.org/download/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
https://www.jstor.org/stable/24540485
https://www.jstor.org/stable/24540485
 https://fast.dpdk.org/doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf
 https://fast.dpdk.org/doc/perf/DPDK_23_03_Intel_NIC_performance_report.pdf
https://doc.dpdk.org/guides/testpmd_app_ug/
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://iperf.fr/

SoCC 2025, November 19-21, 2025, Online

[47]
[48]

[49]

[50

w
—

[52]

[53

[54]

[55]
[56]

[57]

[58

[59

[60]

(61

[62

[63]

[64]

[65

[66

[67]
[68

=
A

[70]

71

[72

L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine Generals Problem.
Transactions on Programming Languages and Systems, 4(3):382-401, 1982.

Leslie Lamport. The part-time parliament. ~ACM Trans. Comput. Syst.,
16(2):133-169, may 1998.

Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and Kang G.
Shin. Hydra: Resilient and Highly Available Remote Memory. In 20th USENIX
Conference on File and Storage Technologies (FAST ’22), pages 181-198, February
2022.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the
tail: Hardware, os, and application-level sources of tail latency. In Proceedings of
the ACM Symposium on Cloud Computing, SOCC ’14, page 1-14, New York, NY,
USA, 2014. Association for Computing Machinery.

Nangingin Li, Anja Kalaba, Michael J. Freedman, Wyatt Lloyd, and Amit Levy.
Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggre-
gated Storage. In 2022 USENIX Annual Technical Conference (ATC 22), pages
271-286, July 2022.

Barbara H. Liskov and James A. Cowling. Viewstamped replication revisited.
2012.

Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic.
XFT: practical fault tolerance beyond crashes. In 12th USENIX Symposium on
Operating Systems Design and Implementation, (OSDI ’16’), pages 485-500, 2016.
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson. F10:
A Fault-Tolerant engineered network. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 399-412, Lombard, IL, April
2013. USENIX Association.

Nancy Lynch. Distributed Algorithms. 1996.

Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy. Efficient
scheduling policies for Microsecond-Scale tasks. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), pages 1-18, Renton,
WA, April 2022. USENIX Association.

Mellanox Connectx-4. http://www.mellanox.com/related-docs/prod_adapter_
cards/PB_ConnectX-4_VPI_Card.pdf. Online; accessed 14-Jul-2025.

Nenad Milosevic, Daniel Cason, Zarko Milosevic, and Fernando Pedone. How
robust are synchronous consensus protocols? In 28th International Conference on
Principles of Distributed Systems, OPODIS 2024, December 11-13, 2024, Lucca, Italy,
volume 324 of LIPIcs, pages 20:1-20:25, 2024.

Nenad Milosevic, Daniel Cason, Zarko Milosevic, Robert Soulé, and Fernando
Pedone. Message size matters: Alterbft’s approach to practical synchronous BFT
in public clouds. CoRR, abs/2503.10292, 2025.

NVIDIA MLNX_OFED Hardware Timestamping documentation. https://docs.
nvidia.com/networking/display/mlnxofedv543681lts/time-stamping. Online; ac-
cessed 14-Jul-2025.

Intel® Infrastructure Processing Unit (Intel® IPU) Platform F2000X-PL
. https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-
intel-fpgas- standard- edition- software-version-20- 1- 1.html. Online; accessed
14-Jul-2025.

Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14, pages
305-319, 2014.

Intel® Infrastructure Processing Unit (Intel® IPU) Platform F2000X-PL
. https://www.intel.com/content/www/us/en/products/details/network-io/ipu/
f2000x- pl-platform.html. Online; accessed 14-Jul-2025.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. Shenango: Achieving high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19), pages 361-378, Boston, MA, February 2019. USENIX
Association.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system
is the control plane. ACM Trans. Comput. Syst., 33(4), nov 2015.

Marius Poke and Torsten Hoefler. Dare: High-performance state machine repli-
cation on rdma networks. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC 15, page 107-118,
New York, NY, USA, 2015. Association for Computing Machinery.

Redis. https://redis.io. Online; accessed 14-Jul-2025.

RedisRaft, consistent key-value store. https://github.com/RedisLabs/redisraft.
Online; accessed 14-Jul-2025.

Redis Replication Docs. https://redis.io/docs/latest/operate/oss_and_stack/
management/replication/. Online; accessed 14-Jul-2025.

Rocky linux - download. https://rockylinux.org/download. Online; accessed
14-Jul-2025.

Davide Rovelli, Pavel Chuprikov, Philipp Berdesinski, Ali Pahlevan, Patrick
Jahnke, and Patrick Eugster. FiDe: Reliable and Fast Crash Failure Detection to
Boost Datacenter Coordination. In 2025 USENIX Annual Technical Conference
(ATC’25), pages 765-788, 2025.

Nicolas Schiper and Sam Toueg. A robust and lightweight stable leader election
service for dynamic systems. In 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), pages 207-216, 2008.

14

(73]

[74]

(75

[76

=
st

[78

[79

(80

[81

o0
&,

(83

(84]

Anon.

R.D. Schlichting and F.B. Schneider. Fail-Stop Processors: An Approach to Design-
ing Fault-Tolerant Computing Systems. ACM Transactions on Computer Systems
(TOCS), 1(3):222-238, 1983.

Jonathan Stone and Craig Partridge. When the crc and tcp checksum disagree.
SIGCOMM Comput. Commun. Rev., 30(4):309-319, aug 2000.

Stress-ng tool. http://colinianking.github.io/stress-ng/. Online; accessed 20-May-
2025.

Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios
Pnevmatikatos, and Alexandres Daglis. The nebula rpc-optimized architecture. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ISCA °20, page 199-212. IEEE Press, 2020.

Catching Corrupted OSPF Packets! - Blog. https://routingfreak.wordpress.com/
2011/03/01/catching-corrupted-ospf-packets/. Online; accessed 14-Jul-2025.
How both TCP and Ethernet checksums fail - Blog. https://www.evanjones.ca/tcp-
and-ethernet-checksums-fail html. Online; accessed 14-Jul-2025.

Parth Thakkar, Rohan Saxena, and Venkata N. Padmanabhan. Autosens: inferring
latency sensitivity of user activity through natural experiments. In Proceedings of
the 21st ACM Internet Measurement Conference, IMC °21, page 15-21, New York,
NY, USA, 2021. Association for Computing Machinery.

Maarten Van Steen and Andrew S Tanenbaum. Distributed systems. Maarten van
Steen Leiden, The Netherlands, 2017.

Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. Charac-
terizing off-path SmartNIC for accelerating distributed systems. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 23), pages
987-1004, Boston, MA, July 2023. USENIX Association.

Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar
S.Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar,
Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam.
The demikernel datapath os architecture for microsecond-scale datacenter sys-
tems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 195-211, New York, NY, USA, 2021. Association for
Computing Machinery.

Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode:
Accelerating Distributed Protocols with {eBPF}. pages 1391-1407, 2023.

Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan
Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M. Levy, and Amin
Vahdat. Carbink: Fault-Tolerant Far Memory. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI °22), pages 55-71, July 2022.
Zookeeper administrator’s guide. https://zookeeper.apache.org/doc/r3.1.2/
zookeeperAdmin.html. Online; Accessed 14-Jul-2025.

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
https://docs.nvidia.com/networking/display/mlnxofedv543681lts/time-stamping
https://docs.nvidia.com/networking/display/mlnxofedv543681lts/time-stamping
https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-intel-fpgas-standard-edition-software-version-20-1-1.html
https://www.intel.com/content/www/us/en/software-kit/750666/modelsim-intel-fpgas-standard-edition-software-version-20-1-1.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/f2000x-pl-platform.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/f2000x-pl-platform.html
https://redis.io
https://github.com/RedisLabs/redisraft
https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
https://redis.io/docs/latest/operate/oss_and_stack/management/replication/
https://rockylinux.org/download
http://colinianking.github.io/stress-ng/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 The rise of programmable network devices
	2.2 Accelerating consensus in datacenters

	3 Design
	3.1 System model
	3.2 Architecture
	3.3 Stable interactions on network hardware

	4 Quorum-less optimal consensus
	4.1 rsbcast
	4.2 Consensus core: lowi

	5 Implementation
	5.1 Development
	5.2 lowi system integration

	6 Evaluation
	6.1 Methodology
	6.2 RQ1: interaction stability
	6.3 RQ2: consensus performance
	6.4 RQ3: fault tolerance and availability
	6.5 RQ4: Real-world applications

	7 Nano-consensus in the bigger picture
	8 Related work
	9 Conclusions
	References

