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Abstract
6G networks aim to achieve seamless integra-

tion of wireless and wired technologies through 
deterministic, end-to-end communication and 
processing across diverse technological domains 
(e.g., edge, cloud). While standards like 5G, Time 
Sensitive Networking (TSN), and Deterministic 
Networking (DetNet) have introduced significant 
advancements in predictable communication, 
much less attention has been given to ensuring 
deterministic packet processing on end devices. 
In many cases, especially in data centers, process-
ing remains a primary source of unpredictable 
jitter since current datapaths - intended as packet 
processing software layers - focus heavily on opti-
mizing common case latency and throughput, 
not considering the full tail latency spectrum. This 
paper provides the first comprehensive end-to-
end latency characterization of high-performance 
packet processing technologies, highlighting their 
insufficient support for determinism. We propose 
a high-level design to address this issue and move 
towards a deterministic datapath for end devices 
employed in future 6G networks.

Introduction
6G calls for improved deterministic, end-to-end 
interactions among remote processes through bet-
ter integration of many established and emerging 
architectural components (edge, cloud) as well 
as improved convergence across a wide range of 
technologies and standards [1].

End-to-End Perspective Requires Timely Pro-
cessing. The “end-to-end” qualifier, which often 
refers to predictability and upper-bounded latency 
in network communication [2], was recently 
extended to include deterministic processing 
(i.e., computation) at the end devices [1]. How-
ever, recent mechanisms strongly focus only on 
the communication layer, commonly believed to 
be the weak point of interactions, dramatically 
lowering communication latency below the mil-
lisecond barrier while improving reliable delivery 
of time-critical traffic. These notably include 
recent 5G standard releases [3], Time Sensitive 
Networking (TSN), a set of IEEE 802.1 standards 
for deterministic Ethernet and Deterministic Net-
working (DetNet), an IETF framework to ensure 
bounded latency and reliability over IP net-
works. Following this trend, we can expect 6G to 
deliver even stronger guarantees on determinism 

in communication, putting pressure on the pro-
cessing layer of end-to-end interactions, i.e., the 
end device datapath, which can no longer be 
neglected.

Processing Bottleneck in End Devices. The 
vast majority of end devices, including embedded, 
mobile, edge and datacenter appliances, run an 
Operating System (OS) to facilitate management 
of the underlying hardware. Widespread OSes 
deployed in production largely consist in a thin 
service layer sitting on top of a possibly custom-
ized Linux kernel (e.g., Android, Raspbian, Ubuntu 
Server) which includes networking functionality. 
Alas, the provided packet processing routines 
struggle to keep up with the pace imposed by 
the growing network capacity and end up 
becoming a bottleneck for high-throughput 
workloads which overload the end device with 
interrupts and packet processing tasks. This, often 
alongside computationally heavy application 
processing, causes contention in underlying com-
pute resources and is particularly detrimental for 
time-sensitive tasks which can be preempted for 
an unbounded duration.

Improved Scalability With OS-Bypass. To 
address this inability to scale to heavy traffic load 
without compromising latency, OS-bypass frame-
works, such as the Data Plane Development 
Kit (DPDK) [4], Remote Direct Memory Access 
(RDMA) [5] and more recently the extended 
Berkeley Packet Filter (eBPF)-based eXpress Data 
Path (XDP) [6], were developed to circumvent the 
OS stack by providing direct, fine-grained con-
trol of datapaths to application developers. These 
frameworks enable applications to bypass kernel 
involvement in certain operations, reducing over-
head associated with the traditional network stack. 
For instance, DPDK facilitates high-performance 
packet processing in user space, while RDMA 
allows direct memory access between networked 
devices without Central Processing Unit (CPU) 
intervention, offering higher throughput and lower 
latency. Similarly, XDP extends eBPF to enable effi-
cient packet processing at the lowest level of the 
network stack, allowing developers to execute cus-
tom actions on packets directly within the network 
driver. A large number of state-of-the-art systems 
combines such OS-bypass methods with custom 
schedulers, protocols, and hardware-offloading 
to optimize the tradeoffs between maximum end 
device processing throughput, common-case 
latency, and CPU utilization.
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The Gap to Determinism. While OS-bypass 
datapaths currently provide the best performance 
in packet processing at scale for end devices, it is 
unclear whether they can provide stronger guar-
antees to time-sensitive applications targeted by 
6G networks. Recent related works focus on opti-
mizing tail-latency for a low number of 9s of the 
99.xth percentile [7], which is not sufficient for 
the reliability requirements of future wireless and 
wired network standards [3]. This work fills the 
gap by providing extensive benchmarks of state-
of-the-art OS-bypass methods and a systematic 
analysis of low worst-case latency, a key enabler 
of determinism. In this context, XDP is of par-
ticular relevance since, as a native subsystem of 
the Linux kernel, it is ubiquitous across the whole 
range of device types involved in 6G networks, 
from embedded devices to datacenter servers. 
We compare XDP against RDMA- the fastest 
OS-bypass datapath to our knowledge - and to 
classic OS-supported UDP sockets, to provide an 
overview of modern datapaths. While DPDK is 
also a valid candidate in this context, we exclude 
it from the analysis to focus on more emerging 
technologies. Our results highlight the brittleness 
of the methods evaluated, suggesting that current 
end device datapaths are not sufficient to cope 
with requirements of 6G networks.

Deterministic Datapath. Specifically, require-
ments for deterministic 6G datapaths are:

Reliability: Processing at end devices must 
guarantee upper-bounded latency for at least for 
99.9999% of packets to match the reliability tar-
get of the latest 5G advanced release 18 standard 
(first introduced in release 16 [3]).

Low-Latency: Packet processing routines need 
to keep up with the speed of the communication 
layer boosted by previous standards (5G, TSN, 
and DetNet). This requires worst-case μs-scale 
reaction times for time-sensitive tasks under arbi-
trary processing load [1], [3].

Solutions to the unpredictability of the net-
working software include offloading time-sensitive 

tasks to hardware, e.g., Field Programmable Gate 
Arrays (FPGAs). Such approaches are very 
effective but require high development efforts 
and costs which are often prohibitive and lack 
flexibility for rapidly evolving applications. An 
alternative is to use specialized real-time OSs, 
such as FreeRTOS, which are however limited to 
simple devices (e.g., sensors, microcontrollers). 
However, large servers expected to be involved 
in 6G networks need to be able to accommo-
date a large number of applications with different 
requirements (not only time critical), making spe-
cific real-time OSes unsuitable for the purpose. 
A more generic approach to improve determin-
ism of time-sensitive packet processing tasks is 
to fine-tune a general-purpose OS for low jitter 
performance. We show that, in practice, this 
approach currently has several limitations which 
might hamper deterministic end-to-end interaction 
and widespread adoption of 6G.

In the following, we start by giving an overview 
of state-of-the-art datapath technologies, then 
present our experimental analysis on deterministic 
latency, and conclude with proposing a design for 
deterministic and practical datapaths for 6G end 
devices and discussing open research questions 
therein.

Technologies Overview
This section outlines the main features and dif-
ferences of the following candidate datapath 
technologies for deterministic 6G interactions, 
which we evaluate subsequently: UDP sockets, 
XDP, and RDMA. Listed from most generic to 
most specialized, these three technologies pro-
vide a complete spectrum of the choices currently 
available to network programmers.

UDP Socket
Sockets are a classic method of inter-process, 
message-passing communication provided by the 
OS. User datagram protocol (UDP) sockets are 
ubiquitous across OSes as they are the endpoint 
of one of the core communication protocols of 
the Internet protocol suite. We use UDP sockets 
as baseline program in our comparative analysis 
since they require the involvement of the OS net-
work stack which is known to be a bottleneck for 
high-throughput workloads. Figure 1(a) overviews 
the communication steps occurring during UDP 

FIGURE 1. Diagrams depicting the high-level packet flow of four different datapaths evaluated in our setup. For each datapath, the left 
and right boxes represent sending and receiving end devices respectively. There are two lines inside each device: a solid line which 
separates user-space (top) from kernel-space (middle), and a dotted line which separates kernel-space from the NIC operations 
(bottom). a) UDP Socket. b) XDP Poll. c) AF_XDP. d) RDMA.

While OS-bypass datapaths currently provide the best performance in packet processing at scale for 
end devices, it is unclear whether they can provide stronger guarantees to time-sensitive applications 

targeted by 6G networks.
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socket operations at the end device. Packets are 
copied from the userspace program to a kernel 
ring buffer (a fixed size, overwritable data struc-
ture managed by the OS) through calls to socket 
API. The OS then copies the packet to the net-
work interface controller (NIC) memory, which 
transmits it over the network. These multiple cop-
ies and context switches are present in both the 
transmission and reception paths, increasing the 
risk of high and unstable latency.

Express Data Path (XDP)
eBPF’s XDP [6] is an OS-bypass framework that 
enables high-performance programmable packet 
processing in the Linux kernel. XDP is an estab-
lished subsystem of the Linux Kernel (introduced 
in v3.18, 2014), making it widely available in the 
entire range of Linux-powered of devices, includ-
ing Android mobiles [8]. XDP sits at the lowest 
level of the network stack, allowing developers 
to execute custom actions on packets directly 
within the network driver. To illustrate a scenario 
where XDP could enhance determinism, consider 
a programmer using it to offload time-sensitive 
components of a large application (e.g., moni-
toring critical events) while allowing the rest of 
the application traffic to pass through the default 
network stack, where packet processing occurs in 
the standard best-effort manner. We evaluate two 
different XDP-based datapaths which we outline 
below.

XDP Poll: This datapath exploits eBPF maps, 
a mechanism that allows eBPF programs to store 
data in a shared memory region. We use a map 
as single-producer single-consumer ring buffer 
between kernel space and user space. Figure 1(b) 
shows a high-level diagram of XDP Poll in which 
the XDP program detects specific packets and 
inserts them in the map. The user-space applica-
tion actively checks the shared memory waiting 
for newly arrived packets and handling as they 
arrive. This method does not offer any advantage 
at transmission. In our experimental program, we 
use a normal UDP socket to send packets.

AF XDP: AF_XDP  [9] is a type of socket 
protocol introduced in Linux Kernel v4.18 that 
allows XDP programs to redirect frames to a 
user-space memory buffer. The method is visu-
alized in Figure 1(c). The user-space application 
handles packets management, sending and recep-
tion through four rings associated with a shared 
memory region, offering fine-grained control. This 
datapath is composed of a XDP program that 
redirects packets to using an eBPF map, and a 
user-space application that processes the packet.

Remote Direct Memory Access (RDMA)
The second OS-bypass datapath evaluated, 
RDMA [5], is a popular communication frame-
work that can perform direct memory access on 
remote hosts, without involving the host’s OS or 
CPU. To accomplish this, RDMA exploits power-
ful NICs which can establish access to a shared 
memory location of the host at setup time. Unlike 
UDP sockets and XDP, RDMA requires specific 
hardware features which are only available on 
certain server-only NICs (currently not available 
in mobile and embedded devices), limiting its 
adoption on cloud servers and large workstations 
at the edge. Nonetheless, we choose to include 

RDMA as a reference of the (probably) best 
possible performance in achievable with mod-
ern devices. Figure 1(d) shows the strong bypass 
capabilities of RDMA, notably the use of only 
one “domain” crossing (from user space to NIC) 
compared to other methods. All Tx and Rx opera-
tions are posted on Queue Pairs (QPs), which are 
composed of a send queue and a receive queue. 
Our implementation uses verbs API (two-sided) 
on RDMA over Converged Ethernet (RoCE) and 
Unreliable Datagram (UD) transport mode, for 
fair comparison with UDP.

Experiments and Latency Analysis
This section outlines our experimental analysis of 
OS-bypass datapaths in order to investigate their 
suitability as deterministic packet processing layers 
for 6G networks devices.

Motivation
OS-bypass datapaths are considered to be the 
default solution for achieving optimal packet 
processing performance, with their main design 
goal being to withstand high network traffic with 
low packet processing latency. While end-to-end 
interactions targeted by 6G [1] certainly require 
such processing scalability, they have the addi-
tional requirement on deterministic delivery, 
which translates into upper-bounded packet pro-
cessing latency. Unfortunately, state-of-the-art 
prototypes [7], [10] and recent analyses [11], 
[12] provide only partial evaluation of tail latency, 
limited to low number of 9s of the 99.xth per-
centile, which is not sufficient for the reliability 
requirements of future 6G wireless and wired 
network standards. We deploy a benchmark suite 
to address this information gap, evaluating worst-
case latency and jitter of the different packet 
processing frameworks. We refrain from evalu-
ating the performance of the network, which is 
not intended to represent a possible 6G network, 
but is only used as mean to test the end device 
datapaths.

To motivate previously defined requirements, 
our evaluation addresses the following research 
questions.

RQ1: �How stable is the latency of end device 
datapaths at varying throughput (the sec-
tion “RQ1: Throughput Response”)? (cf. 
reliability)

RQ2: �How do end devices datapaths respond 
to different CPU loads and performance 
tuning settings (the section “RQ2: Tuning 
Effects”)? (cf. reliability, low-latency)

Methodology
Each experimental latency distribution is obtained 
from at least 1 million ping-pong rounds in which 
a client node starts sending ping packets at a fixed 
periodic rate to a server, which sends them back 
as pong packets upon reception. We ensure that 
the network is free from any traffic other than 
the ping-pong periodic traffic in order to solely 
evaluate the packet processing response. We run 
the experiments using the previously-introduced 
OS-bypass datapaths (XDP Poll, AF_XDP, RDMA) 
and use classic UDP socket as baseline. In the 
experiments including CPU stress, the CPU load 
is generated by the stress-ng tool. We run all 
tests using small and large packet sizes of 128B 
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and 1KiB to investigate possible size-related opti-
mizations of the different bypass systems. Since 
the obtained measurements show no major effect 
between the two, we only report results for 1KiB 
packets. We attribute this to the fact that both 
128B and 1KiB are within the Maximum Transmis-
sion Unit (MTU) (1500B) of our system. Evaluation 
of larger packet sizes is outside of scope since (1) 
packets within the MTU are expected to deliver 
the best latency performance [11] and (2) data-
centers often disable packet fragmentation as it is 
too detrimental for high-speed networking.

Our setup consists in two off-the-shelf serv-
ers connected via 100Gbps Ethernet through an 
Edgecore Wedge 100BF-32X TOR switch. Servers 
are equipped with Intel Xeon Gold 5315Y 3.20 
GHz CPUs, 188G of RAM, Mellanox ConnectX-7 
100Gbps NICs and run Ubuntu 22.04 with Linux 
kernel v6.6.19. We focus our analysis mostly on 
servers since they constitute the convergence 
point of several end-to-end systems. Furthermore, 
since 6G networks are expected to extend across 
multiple domains including the Cloud [1], it is 
likely that powerful servers will provide the upper 
bound in processing performance among devices 
connected to a 6G network, since they have more 
powerful hardware (i.e., CPU frequency, network-
ing speed) compared to mobile and embedded 
devices. To demonstrate servers’ faster process-
ing capabilities, we perform UDP socket latency 
tests on a Linux-based (Raspbian Buster) embed-
ded device: a Raspberry Pi 4B with 2GB RAM, 
connected to a 5GHz Wi-Fi network. We do not 
provide extensive evaluation of slower embed-
ded and mobile devices since, as we show shortly, 
servers already display significant limitations in 
deterministic packet processing. Experiments refer 
to the server setup unless specified otherwise.

Source code is available at https://github.com/
swystems/ det-bypass

Metrics
We insert four 64B timestamps into every ping-
pong packet, just before every send and receive 
event. Note that timestamps from different nodes 
cannot be directly compared since the clocks of 
the hosts are not synchronized. Packets include 
a unique monotonically increasing identifier and 

a random nonce used for error-checking and syn-
chronization. We use timestamps to obtain the 
following metrics:
•	 Latency: End-to-end latency consisting of 

network delay and processing delay of each 
packet. Inspired by clock synchronization 
methods, we assume that latency is simi-
lar for both ways and obtain it as half the 
round-trip time of a packet. Timestamps on 
the receiver side are only used to calculate 
the processing time on the receiver side.

•	 Jitter: Difference between maximum laten-
cy and minimum latency of a specific meth-
od. It captures how stable the latency is.
In our setup with no additional traffic, and 

benchmark traffic throughput well below net-
work capacity, a perfectly deterministic packet 
processing layer should result in only the jitter cor-
responding to the variability in switch forwarding 
latency (expected to be in the ns range due to 
hardware precision).

RQ1. Throughput Response
Figure 2 shows the latency distribution of the 
analyzed methods. We choose 8 Mbps as lower 
bound, i.e., 1 packet sent every 1 ms, interval 
which is largely sufficient to process a single packet 
for any datapath, minimizing the probability of 
queuing. We then increase throughput by 10× 
(80Mbps and 800 Mbps) until 1600 Mbps, which 
we find to be the experimental (single-core) limit 
of our system beyond which we start observing 
inconsistent latency values. As expected, higher 
throughput values lead to higher latency variance 
for all approaches as it can be seen by the increas-
ing height of the boxes. Overall, RDMA shows 
the best median latency around 3.3μs, evidenc-
ing the benefits of NIC hardware support. XDP 
Poll has a more variable latency with a jump from 
9μs to 128μs at 800Mbps while AF_XDP achieves 
much better scalability with stable median latency 
around 15μs. The interesting phenomenon of 
median latency reduction for higher throughput 
values is covered as part of the section “RQ2: Tun-
ing Effects” OS-bypass datapaths manage to keep 
the 99.99th percentile latency below 100μs for the 
two lower throughput values but suffer from a 2× 
increase at higher rates.

FIGURE 2. Single trip latency of 1KiB packets at increasing throughput values. Boxes edges range from 25% to 75% of the distribution, 
whiskers from 0.01% to 99.99% percentile and circles show the remaining outliers. The y-axis is in log-scale. Boxes are ordered left 
to right for each method listed in the legend.
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Takeaways. Our tests show that both XDP and 
RDMA introduce non-negligible jitter, resulting in 
over 10× increase in latency in the worst case, 
slightly above 100μs. Overall, the best approach 
under normal system conditions is RDMA and the 
worst is UDP in terms of median and maximum 
latency, while all approaches perform similarly in 
terms of relative jitter.

RQ2; Tuning Effects
This experiment analyzes the effects of perfor-
mance tuning for low jitter on the evaluated 
methods. In order to showcase the impact of per-
formance tuning even for light processing loads, 
we choose a fixed low throughput of 80Mbps 
for all our tests. Inspired by seminal work on 
deterministic coordination [13] and system tuning 
guides [14], we apply the following system optimi-
zations. We
•	 pin the sender and receiver processes to 

cores assigned to the isolcpus  kernel 
boot parameter;

•	 route all IRQs away from the dedicated 
cores using the proc interfaces to further 
limit (but not disable) OS interrupts target-
ing our isolated cores;

•	 disable interrupt coalescence settings in the 
NIC to avoid unwanted IRQ batching at 
send and receive;

•	 set the CPU governor of dedicated cores to 
the highest power state (Intel C-state C0) to 
avoid costly wake-ups from sleep states.
Figure 3 and Table 1 present latency metrics. 

We report the latency distribution of the default 
system with no load from RQ1 experiments 
(labelled “Default”) and compare it against the 
system under 80% CPU load (labelled “Default 
& Stress”) and the system with performance tun-
ing under the same 80% CPU stress (labelled 
“Tuned & Stress”). Application of stress dramati-
cally deteriorates the default system’s worst-case 
latency performance by at least 100× for server 
experiments: upper whiskers (99.99th percen-
tile) and outliers reach almost ∼4ms latency 
for both XDP methods and RDMA, with UDP 
sockets reaching ∼7ms peaks. The tuned sys-
tem, on the other hand, manages to achieve 
much better worst-case latency, even improving 
on the default configuration: isolation settings 
prevent context switch interference introduced 
by arbitrary CPU load. The same effect can be 
seen on the embedded device (Raspberry Pi) 
wireless setup, which suffers from a 5× (72ms) 
jitter increase upon high CPU load, mitigated by 
tuning which brings it down to 1.8× (23ms). As 
expected, the absolute latency and jitter values 
are much higher than in the wired server setups. 
We omit XDP tests for the Raspberry Pi setup 
due to the lack of native XDP support from the 
network driver.

A key outcome of performance tuning is that 
the 99.99th and 100th percentile latencies of 
all approaches in server experiments are much 
closer to each other than in the default setup. An 
interesting observation is that mean and median 
latencies of the untuned configuration with high 
CPU stress seem to improve on the default sys-
tem configuration with no stress. We attribute this 
to CPU power states: a busy CPU is less likely to 
be assigned a lower power state, hence lower 

frequency, rendering the CPU more responsive 
in the common case. The tuned configuration 
achieves the same effect by manually setting the 
CPU governor to performance mode.

Takeaways. Results suggest that performance 
tuning of the OS is the predominant factor in jitter 
mitigation, independently from the datapath used. 
This is required in Linux-based servers and embed-
ded devices under heavy CPU load to prevent 
processing latency spikes overbearing network 
latency. Combining an OS-bypass datapath with 
performance tuning provides the best of both 
worlds: low average latency at high traffic load 
and limited jitter at high processing loads.

The Usability Barrier Hindering Determinism
OS-bypass methods have a degree of specialization 
which sits in between established OS-supported 
network I/O methods, such as UDP sockets, and 
custom hardware solutions, such as dedicated 
FPGAs or ASICs. Nonetheless, we find that they 
still require substantial development effort, further 
aggravated by the equally challenging procedure 
of tuning the OS for low latency and jitter. In this 
section we gauge the engineering effort involved in 
the attempt of bringing determinism to the packet 
processing layer, discussing how limited usability is 
detrimental for determinism.

Development Effort
Table 2 shows the Lines of Code (LoC) used 
for the C implementation for each datapath 
with standard optimization. As expected, the 
well-established UDP socket abstraction results in 
the smallest number of LoC. XDP Poll follows with 
a total of 600 LoC which include additional user-
space logic to implement the polling functionality 
and the eBPF map operations in kernel space. 

FIGURE 3. Latency distribution at 80 Mbps with different system configurations. 
The left plot reports results of the default system from Figure 2, to which 
we apply 80% CPU stress (central plot) and then tune the system for 
latency-critical performance (right plot). The y -axis is in log-scale.

Combining an OS-bypass datapath with performance tuning provides the best of both worlds: low 
average latency at high traffic load and limited jitter at high processing loads.
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The two more flexible approaches, AF_XDP and 
RDMA come with similar development overhead 
due to concurrent low-level buffer handling logic. 
This showcases the typical cost of specialization, 
which makes the adoption and optimization of 
OS-bypass technologies a difficult task. We argue 
that the limited maturity of OS-bypass technol-
ogies is also a major contributing factor to the 
added development effort and advocate for the 
need of suitable abstraction layers without trading 
off performance, as attempted by some projects, 
e.g., Demikernel [10].

Like other state-of-the-art low-latency frame-
works [13], we applied low-latency performance 
tuning of the OS following engineering best 
practices [14], involving manual configuration 
of scheduling, power management, Linux ker-
nel and NIC settings (the section “RQ2: Tuning 
Effects”). The procedure was very time-consuming 
and error-prone, requiring several weeks of tri-
al-and-error iterations needed to find the right 
“recipe”. High resource consumption is another 
consequence of the tuning procedure which, 
in our analysis, requires one full CPU core 
idling with performance power settings, causing 
non-negligible disruption to other processes, espe-
cially under heavy load.

Usability Challenges
The set of software tools to enable high-
performance packet processing currently 
available in commodity OSs (e.g., Linux) make it 
possible to achieve a certain degree of reliable, 
low-latency packet processing. However, while 
it remains uncertain whether their programma-
bility will meet the stricter determinism demands 
anticipated for future 6G networks and wired 
standards like TSN and DetNet, our analysis 
highlights a notable gap in usability. This encom-
passes both the high complexity involved in the 

implementation of highly specialized OS-bypass 
techniques and, most importantly, the absence 
of straightforward mechanisms for configuring 
“deterministic” settings. We claim that poor 
usability is a major barrier to determinism for two 
reasons. First and foremost, it hinders the cor-
rect implementation of deterministic programs, 
leading to situations in which a single miscon-
figured option of a single device would impact 
the end-to-end response time guarantees of a 
whole system. Secondly, it affects reproducibility, 
obstructing widespread adoption of a determinis-
tic datapath across a wide range of device types. 
We argue that substantial advances are required 
to improve usability in the packet processing 
layer to better support reliability and low-latency 
targets of current networked systems and, even 
more critically, of 6G networks.

Design Guidelines for a Deterministic and 
Practical 6G Datapath

In this section we elaborate on the takeaways 
from our analysis to propose a generic design of 
a packet processing layer which is both determin-
istic, meaning it provides reliable packet delivery 
with low latency, and is practical. Figure 4 shows 
the proposed design which we discuss in the sec-
tions below.

Combining OS Tuning With OS Bypass
State-of-the-art datapaths (i.e., OS-bypass tech-
nologies) provide unmatched scalability, allowing 
end devices to withstand hundreds of Gbps of 
throughput from rapidly-evolving networks. 
However, they are not sufficient to guarantee 
reliable low-latency interactions under high pro-
cessing load, which is, unfortunately, a growing 
requirement of edge-cloud systems in 6G net-
works, especially in end devices. Let’s take, for 
instance, AF_XDP’s 99.99th percentile one-way 
latency between two powerful servers under pro-
cessing load of 2 ms (see Table 1). Considering 
that the 5G new radio (NR) standard release 17 
targets one-way Radio Access Network (RAN) 
downlink or uplink user-plane latencies of 0.5 
ms with reliability up to 99.9999th percentile [3] 
(unchanged in 5G-advanced release 18), we can 
easily see how processing can result in having 
larger “non-determinism” in end-to-end commu-
nication. Our analysis indicates that performance 
fine-tuning of the end device OS is essential to 
cap latency to around 100μs, falling into the 5G 
target range.

Method Userspace LoC Kernelspace LoC

UDP socket 176 0

XDP poll 397 103

AF_XDP 689 45

RDMA 625 0

TABLE 2. Lines of Code (LoC) per implemented 
method. All programs were written in C and use 
standard optimization.

Method
Median latency 99th percentile lat. 99.99th percentile lat. Maximum latency Jitter

D D&S T&S D D&S T&S D D&S T&S D D&S T&S D D&S T&S

XDP Poll 9.44 7.02 7.46 11.22 12.84 9.07 50.8 3051 46.72 248.3 4003 99.46 241.3 3998 92.38

AF_XDP 15.09 10.36 6.24 46.34 14.56 7.81 68.12 2024 52.91 249.6 3998 114.6 238.7 3990 108.6

RDMA UD 3.02 3.1 2.96 3.59 3.41 3.16 5.52 1997 37.4 9.9 3974 93.57 6.94 3971 90.69

UDP Socket 24.82 12.46 11.92 85.21 2174 14.09 122.2 4669 60.69 136.8 6827 99.37 118.9 6818 89.96

UDP Socket (RPi setup*) 1821 2912 1823 11026 66592 19805 13725 74329 24225 14723 75325 24844 12902 72413 23021

TABLE 1. Summary of latency metrics at 80 Mbps. System configurations are indicated with D = Default, D&S = Default and Stress, T&S 
= Tuned and Stress. Values are in μs. *Embedded test setup using Raspberry Pi 4 on a 5GHz wireless network.
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Future deterministic packet processing layers 
should therefore combine high-performance 
packet processing with performance tuning of 
the OS as shown in Figure 4, possibly lever-
aging techniques from established real- time 
OSes. Moreover, our analysis substantiates the 
need for advances in both packet processing 
technologies and performance tuning to better 
support determinism. This is required to keep 
up with the evolution of 6G networks in terms 
of reliability and low-latency and avoid process-
ing overhead to become the bottleneck of the 
communication.

A Practical, Homogeneous Packet Processing Layer
In the section “The Usability Barrier Hindering 
Determinism” we discussed how the limited 
usability of current packet processing layers and 
commodity OSs hampers determinism of end-to-
end interactions in current and future networked 
systems. Additionally, as highlighted by recent pro-
posals of integration of different mobile networks 
innovations into a consistent architecture, “6G 
superpower must be simplicity” [15]. Establish-
ing suitable abstraction layers without trading off 
performance is therefore a primary requirement 
of end devices in 6G networks. Demikernel [10], 
a seminal work in this area, introduces a prom-
ising datapath design which aggregates multiple 
OS-bypass systems to enhance usability and por-
tability. However, neither Demikernel, nor other 
work, to our knowledge, addresses end-to-end, 
reliable processing.

We propose an architecture draft (Figure 4) 
where a deterministic datapath offers a homo-
geneous, full-featured interface to the user to 
significantly improve usability of configuring and 
programming end devices. The interface bene-
fits from (1) including existing high-performance 
packet processing frameworks and should seam-
lessly (2) integrate endpoints for configuration 
performance tuning. We include both features into 
the deterministic datapath (green box in Figure 4), 
which time-sensitive applications use as a reli-
able packet processing layer to send and receive 
packets over a 6G network. This component 
should also be extendable with future technol-
ogies and mechanisms arising from end device 
software research. Support of a commodity OS 
(e.g., Linux-based) would also foster widespread 
adoption. This would allow applications to seam-
lessly choose between normal, best-effort packet 
processing, or deterministic packet processing, 
providing the tools to optimize a given workload 
through a single interface.

Conclusion and Outlook
Following the trend from 5G, 6G networks are 
expected to deliver strong deterministic guar-
antees for end-to-end communication between 
time-sensitive applications. While the proposed 
integrations with wired standards such as TSN 
and DetNet show promising advances in the com-
munication layer, the packet processing layer at 
the end devices has been left out of the picture. 
We show that current high-performance packet 
processing technologies, namely OS-bypass dat-
apaths, struggle to keep up with the speed and 
reliability of the network. Going forward we 
advocate for improvements on how quickly and 

reliably network packets are processed at the end 
devices. In particular
•	 additional work is required to further 

increase reliability and speed of datap-
aths in 6G end devices subject to heavy 
processing load and multitasking. Namely, 
datapaths should aim at upper-bounded, 
μs-scale processing latency as targeted by 
recent 5G standards targets [3].

•	 deterministic response times should be guar-
anteed across the entire spectrum of 6G 
devices (datacenter servers, mobile, embed-
ded, etc).

•	 more work is needed to abstract highly 
complex implementation and configuration 
of deterministic packet processing pipe-
lines involving OS-bypass technologies and 
performance tuning. A practical datapath 
is required to facilitate convergence in 6G 
network devices, enabling error-free deter-
ministic processing.

•	 the community needs to address the 
challenging task of providing the right 

FIGURE 4. Architecture draft for a practical, homogeneous datapath to support 
deterministic processing in 6G end device communication.

A practical datapath is required to facilitate convergence in 6G network devices, enabling error-free 
deterministic processing.
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interfaces to programmers, allowing them to 
tailor deterministic properties to the specific 
needs of an application, striking the balance 
between programmability and practicality.

•	 deterministic datapaths need to support a 
very diverse software and hardware eco-
system. Future datapaths should be easily 
extendable to support new technologies 
(frameworks, technologies, OS configura-
tions, hardware platforms, etc.) and auto-
matically adapt to the underlying system.
We conclude by proposing a high-level 

architecture draft of a deterministic datapath 
which addresses some of the above-mentioned 
challenges.
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