
IEEE Network • May/June 2025 75
0890-8044 © 2025 IEEE. All rights reserved, including rights for text and data mining,

and training of artificial intelligence and similar technologies.

Abstract
6G networks aim to achieve seamless integra-

tion of wireless and wired technologies through
deterministic, end-to-end communication and
processing across diverse technological domains
(e.g., edge, cloud). While standards like 5G, Time
Sensitive Networking (TSN), and Deterministic
Networking (DetNet) have introduced significant
advancements in predictable communication,
much less attention has been given to ensuring
deterministic packet processing on end devices.
In many cases, especially in data centers, process-
ing remains a primary source of unpredictable
jitter since current datapaths - intended as packet
processing software layers - focus heavily on opti-
mizing common case latency and throughput,
not considering the full tail latency spectrum. This
paper provides the first comprehensive end-to-
end latency characterization of high-performance
packet processing technologies, highlighting their
insufficient support for determinism. We propose
a high-level design to address this issue and move
towards a deterministic datapath for end devices
employed in future 6G networks.

Introduction
6G calls for improved deterministic, end-to-end
interactions among remote processes through bet-
ter integration of many established and emerging
architectural components (edge, cloud) as well
as improved convergence across a wide range of
technologies and standards [1].

End-to-End Perspective Requires Timely Pro-
cessing. The “end-to-end” qualifier, which often
refers to predictability and upper-bounded latency
in network communication [2], was recently
extended to include deterministic processing
(i.e., computation) at the end devices [1]. How-
ever, recent mechanisms strongly focus only on
the communication layer, commonly believed to
be the weak point of interactions, dramatically
lowering communication latency below the mil-
lisecond barrier while improving reliable delivery
of time-critical traffic. These notably include
recent 5G standard releases [3], Time Sensitive
Networking (TSN), a set of IEEE 802.1 standards
for deterministic Ethernet and Deterministic Net-
working (DetNet), an IETF framework to ensure
bounded latency and reliability over IP net-
works. Following this trend, we can expect 6G to
deliver even stronger guarantees on determinism

in communication, putting pressure on the pro-
cessing layer of end-to-end interactions, i.e., the
end device datapath, which can no longer be
neglected.

Processing Bottleneck in End Devices. The
vast majority of end devices, including embedded,
mobile, edge and datacenter appliances, run an
Operating System (OS) to facilitate management
of the underlying hardware. Widespread OSes
deployed in production largely consist in a thin
service layer sitting on top of a possibly custom-
ized Linux kernel (e.g., Android, Raspbian, Ubuntu
Server) which includes networking functionality.
Alas, the provided packet processing routines
struggle to keep up with the pace imposed by
the growing network capacity and end up
becoming a bottleneck for high-throughput
workloads which overload the end device with
interrupts and packet processing tasks. This, often
alongside computationally heavy application
processing, causes contention in underlying com-
pute resources and is particularly detrimental for
time-sensitive tasks which can be preempted for
an unbounded duration.

Improved Scalability With OS-Bypass. To
address this inability to scale to heavy traffic load
without compromising latency, OS-bypass frame-
works, such as the Data Plane Development
Kit (DPDK) [4], Remote Direct Memory Access
(RDMA) [5] and more recently the extended
Berkeley Packet Filter (eBPF)-based eXpress Data
Path (XDP) [6], were developed to circumvent the
OS stack by providing direct, fine-grained con-
trol of datapaths to application developers. These
frameworks enable applications to bypass kernel
involvement in certain operations, reducing over-
head associated with the traditional network stack.
For instance, DPDK facilitates high-performance
packet processing in user space, while RDMA
allows direct memory access between networked
devices without Central Processing Unit (CPU)
intervention, offering higher throughput and lower
latency. Similarly, XDP extends eBPF to enable effi-
cient packet processing at the lowest level of the
network stack, allowing developers to execute cus-
tom actions on packets directly within the network
driver. A large number of state-of-the-art systems
combines such OS-bypass methods with custom
schedulers, protocols, and hardware-offloading
to optimize the tradeoffs between maximum end
device processing throughput, common-case
latency, and CPU utilization.

Toward a Practical Deterministic Datapath for 6G End Devices
Davide Rovelli , Michele Dalle Rive , and Patrick Eugster

DETERMINISTIC, RELIABLE, RESILIENT, AND PROGRAMMABLE
NETWORKS FOR 6G

Digital Object Identifier:
10.1109/MNET.2025.3551372

Date of Current Version:
13 May 2025

Date of Publication:
14 March 2025

Davide Rovelli (corresponding author) is with the Faculty of Informatics, Università della Svizzera italiana (USI), 6900 Lugano, Switzerland,
and also with SAP SE, 69190 Walldorf, Germany; Michele Dalle Rive is with the Faculty of Informatics, Università della Svizzera italiana

(USI), 6900 Lugano, Switzerland, and also with the Computing Science Department, ETH Zürich, 8092 Zürich, Switzerland; Patrick Eugster
is with the Faculty of Informatics, Università della Svizzera italiana (USI), 6900 Lugano, Switzerland.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

http://orcid.org/0000-0002-6881-3126
https://orcid.org/0009-0003-6600-5736
http://orcid.org/0000-0003-3864-9078

IEEE Network • May/June 202576

The Gap to Determinism. While OS-bypass
datapaths currently provide the best performance
in packet processing at scale for end devices, it is
unclear whether they can provide stronger guar-
antees to time-sensitive applications targeted by
6G networks. Recent related works focus on opti-
mizing tail-latency for a low number of 9s of the
99.xth percentile [7], which is not sufficient for
the reliability requirements of future wireless and
wired network standards [3]. This work fills the
gap by providing extensive benchmarks of state-
of-the-art OS-bypass methods and a systematic
analysis of low worst-case latency, a key enabler
of determinism. In this context, XDP is of par-
ticular relevance since, as a native subsystem of
the Linux kernel, it is ubiquitous across the whole
range of device types involved in 6G networks,
from embedded devices to datacenter servers.
We compare XDP against RDMA- the fastest
OS-bypass datapath to our knowledge - and to
classic OS-supported UDP sockets, to provide an
overview of modern datapaths. While DPDK is
also a valid candidate in this context, we exclude
it from the analysis to focus on more emerging
technologies. Our results highlight the brittleness
of the methods evaluated, suggesting that current
end device datapaths are not sufficient to cope
with requirements of 6G networks.

Deterministic Datapath. Specifically, require-
ments for deterministic 6G datapaths are:

Reliability: Processing at end devices must
guarantee upper-bounded latency for at least for
99.9999% of packets to match the reliability tar-
get of the latest 5G advanced release 18 standard
(first introduced in release 16 [3]).

Low-Latency: Packet processing routines need
to keep up with the speed of the communication
layer boosted by previous standards (5G, TSN,
and DetNet). This requires worst-case μs-scale
reaction times for time-sensitive tasks under arbi-
trary processing load [1], [3].

Solutions to the unpredictability of the net-
working software include offloading time-sensitive

tasks to hardware, e.g., Field Programmable Gate
Arrays (FPGAs). Such approaches are very
effective but require high development efforts
and costs which are often prohibitive and lack
flexibility for rapidly evolving applications. An
alternative is to use specialized real-time OSs,
such as FreeRTOS, which are however limited to
simple devices (e.g., sensors, microcontrollers).
However, large servers expected to be involved
in 6G networks need to be able to accommo-
date a large number of applications with different
requirements (not only time critical), making spe-
cific real-time OSes unsuitable for the purpose.
A more generic approach to improve determin-
ism of time-sensitive packet processing tasks is
to fine-tune a general-purpose OS for low jitter
performance. We show that, in practice, this
approach currently has several limitations which
might hamper deterministic end-to-end interaction
and widespread adoption of 6G.

In the following, we start by giving an overview
of state-of-the-art datapath technologies, then
present our experimental analysis on deterministic
latency, and conclude with proposing a design for
deterministic and practical datapaths for 6G end
devices and discussing open research questions
therein.

Technologies Overview
This section outlines the main features and dif-
ferences of the following candidate datapath
technologies for deterministic 6G interactions,
which we evaluate subsequently: UDP sockets,
XDP, and RDMA. Listed from most generic to
most specialized, these three technologies pro-
vide a complete spectrum of the choices currently
available to network programmers.

UDP Socket
Sockets are a classic method of inter-process,
message-passing communication provided by the
OS. User datagram protocol (UDP) sockets are
ubiquitous across OSes as they are the endpoint
of one of the core communication protocols of
the Internet protocol suite. We use UDP sockets
as baseline program in our comparative analysis
since they require the involvement of the OS net-
work stack which is known to be a bottleneck for
high-throughput workloads. Figure 1(a) overviews
the communication steps occurring during UDP

FIGURE 1. Diagrams depicting the high-level packet flow of four different datapaths evaluated in our setup. For each datapath, the left
and right boxes represent sending and receiving end devices respectively. There are two lines inside each device: a solid line which
separates user-space (top) from kernel-space (middle), and a dotted line which separates kernel-space from the NIC operations
(bottom). a) UDP Socket. b) XDP Poll. c) AF_XDP. d) RDMA.

While OS-bypass datapaths currently provide the best performance in packet processing at scale for
end devices, it is unclear whether they can provide stronger guarantees to time-sensitive applications

targeted by 6G networks.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2025 77

socket operations at the end device. Packets are
copied from the userspace program to a kernel
ring buffer (a fixed size, overwritable data struc-
ture managed by the OS) through calls to socket
API. The OS then copies the packet to the net-
work interface controller (NIC) memory, which
transmits it over the network. These multiple cop-
ies and context switches are present in both the
transmission and reception paths, increasing the
risk of high and unstable latency.

Express Data Path (XDP)
eBPF’s XDP [6] is an OS-bypass framework that
enables high-performance programmable packet
processing in the Linux kernel. XDP is an estab-
lished subsystem of the Linux Kernel (introduced
in v3.18, 2014), making it widely available in the
entire range of Linux-powered of devices, includ-
ing Android mobiles [8]. XDP sits at the lowest
level of the network stack, allowing developers
to execute custom actions on packets directly
within the network driver. To illustrate a scenario
where XDP could enhance determinism, consider
a programmer using it to offload time-sensitive
components of a large application (e.g., moni-
toring critical events) while allowing the rest of
the application traffic to pass through the default
network stack, where packet processing occurs in
the standard best-effort manner. We evaluate two
different XDP-based datapaths which we outline
below.

XDP Poll: This datapath exploits eBPF maps,
a mechanism that allows eBPF programs to store
data in a shared memory region. We use a map
as single-producer single-consumer ring buffer
between kernel space and user space. Figure 1(b)
shows a high-level diagram of XDP Poll in which
the XDP program detects specific packets and
inserts them in the map. The user-space applica-
tion actively checks the shared memory waiting
for newly arrived packets and handling as they
arrive. This method does not offer any advantage
at transmission. In our experimental program, we
use a normal UDP socket to send packets.

AF XDP: AF_XDP [9] is a type of socket
protocol introduced in Linux Kernel v4.18 that
allows XDP programs to redirect frames to a
user-space memory buffer. The method is visu-
alized in Figure 1(c). The user-space application
handles packets management, sending and recep-
tion through four rings associated with a shared
memory region, offering fine-grained control. This
datapath is composed of a XDP program that
redirects packets to using an eBPF map, and a
user-space application that processes the packet.

Remote Direct Memory Access (RDMA)
The second OS-bypass datapath evaluated,
RDMA [5], is a popular communication frame-
work that can perform direct memory access on
remote hosts, without involving the host’s OS or
CPU. To accomplish this, RDMA exploits power-
ful NICs which can establish access to a shared
memory location of the host at setup time. Unlike
UDP sockets and XDP, RDMA requires specific
hardware features which are only available on
certain server-only NICs (currently not available
in mobile and embedded devices), limiting its
adoption on cloud servers and large workstations
at the edge. Nonetheless, we choose to include

RDMA as a reference of the (probably) best
possible performance in achievable with mod-
ern devices. Figure 1(d) shows the strong bypass
capabilities of RDMA, notably the use of only
one “domain” crossing (from user space to NIC)
compared to other methods. All Tx and Rx opera-
tions are posted on Queue Pairs (QPs), which are
composed of a send queue and a receive queue.
Our implementation uses verbs API (two-sided)
on RDMA over Converged Ethernet (RoCE) and
Unreliable Datagram (UD) transport mode, for
fair comparison with UDP.

Experiments and Latency Analysis
This section outlines our experimental analysis of
OS-bypass datapaths in order to investigate their
suitability as deterministic packet processing layers
for 6G networks devices.

Motivation
OS-bypass datapaths are considered to be the
default solution for achieving optimal packet
processing performance, with their main design
goal being to withstand high network traffic with
low packet processing latency. While end-to-end
interactions targeted by 6G [1] certainly require
such processing scalability, they have the addi-
tional requirement on deterministic delivery,
which translates into upper-bounded packet pro-
cessing latency. Unfortunately, state-of-the-art
prototypes [7], [10] and recent analyses [11],
[12] provide only partial evaluation of tail latency,
limited to low number of 9s of the 99.xth per-
centile, which is not sufficient for the reliability
requirements of future 6G wireless and wired
network standards. We deploy a benchmark suite
to address this information gap, evaluating worst-
case latency and jitter of the different packet
processing frameworks. We refrain from evalu-
ating the performance of the network, which is
not intended to represent a possible 6G network,
but is only used as mean to test the end device
datapaths.

To motivate previously defined requirements,
our evaluation addresses the following research
questions.

RQ1: �How stable is the latency of end device
datapaths at varying throughput (the sec-
tion “RQ1: Throughput Response”)? (cf.
reliability)

RQ2: �How do end devices datapaths respond
to different CPU loads and performance
tuning settings (the section “RQ2: Tuning
Effects”)? (cf. reliability, low-latency)

Methodology
Each experimental latency distribution is obtained
from at least 1 million ping-pong rounds in which
a client node starts sending ping packets at a fixed
periodic rate to a server, which sends them back
as pong packets upon reception. We ensure that
the network is free from any traffic other than
the ping-pong periodic traffic in order to solely
evaluate the packet processing response. We run
the experiments using the previously-introduced
OS-bypass datapaths (XDP Poll, AF_XDP, RDMA)
and use classic UDP socket as baseline. In the
experiments including CPU stress, the CPU load
is generated by the stress-ng tool. We run all
tests using small and large packet sizes of 128B

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 202578

and 1KiB to investigate possible size-related opti-
mizations of the different bypass systems. Since
the obtained measurements show no major effect
between the two, we only report results for 1KiB
packets. We attribute this to the fact that both
128B and 1KiB are within the Maximum Transmis-
sion Unit (MTU) (1500B) of our system. Evaluation
of larger packet sizes is outside of scope since (1)
packets within the MTU are expected to deliver
the best latency performance [11] and (2) data-
centers often disable packet fragmentation as it is
too detrimental for high-speed networking.

Our setup consists in two off-the-shelf serv-
ers connected via 100Gbps Ethernet through an
Edgecore Wedge 100BF-32X TOR switch. Servers
are equipped with Intel Xeon Gold 5315Y 3.20
GHz CPUs, 188G of RAM, Mellanox ConnectX-7
100Gbps NICs and run Ubuntu 22.04 with Linux
kernel v6.6.19. We focus our analysis mostly on
servers since they constitute the convergence
point of several end-to-end systems. Furthermore,
since 6G networks are expected to extend across
multiple domains including the Cloud [1], it is
likely that powerful servers will provide the upper
bound in processing performance among devices
connected to a 6G network, since they have more
powerful hardware (i.e., CPU frequency, network-
ing speed) compared to mobile and embedded
devices. To demonstrate servers’ faster process-
ing capabilities, we perform UDP socket latency
tests on a Linux-based (Raspbian Buster) embed-
ded device: a Raspberry Pi 4B with 2GB RAM,
connected to a 5GHz Wi-Fi network. We do not
provide extensive evaluation of slower embed-
ded and mobile devices since, as we show shortly,
servers already display significant limitations in
deterministic packet processing. Experiments refer
to the server setup unless specified otherwise.

Source code is available at https://github.com/
swystems/ det-bypass

Metrics
We insert four 64B timestamps into every ping-
pong packet, just before every send and receive
event. Note that timestamps from different nodes
cannot be directly compared since the clocks of
the hosts are not synchronized. Packets include
a unique monotonically increasing identifier and

a random nonce used for error-checking and syn-
chronization. We use timestamps to obtain the
following metrics:
•	 Latency: End-to-end latency consisting of

network delay and processing delay of each
packet. Inspired by clock synchronization
methods, we assume that latency is simi-
lar for both ways and obtain it as half the
round-trip time of a packet. Timestamps on
the receiver side are only used to calculate
the processing time on the receiver side.

•	 Jitter: Difference between maximum laten-
cy and minimum latency of a specific meth-
od. It captures how stable the latency is.
In our setup with no additional traffic, and

benchmark traffic throughput well below net-
work capacity, a perfectly deterministic packet
processing layer should result in only the jitter cor-
responding to the variability in switch forwarding
latency (expected to be in the ns range due to
hardware precision).

RQ1. Throughput Response
Figure 2 shows the latency distribution of the
analyzed methods. We choose 8 Mbps as lower
bound, i.e., 1 packet sent every 1 ms, interval
which is largely sufficient to process a single packet
for any datapath, minimizing the probability of
queuing. We then increase throughput by 10×
(80Mbps and 800 Mbps) until 1600 Mbps, which
we find to be the experimental (single-core) limit
of our system beyond which we start observing
inconsistent latency values. As expected, higher
throughput values lead to higher latency variance
for all approaches as it can be seen by the increas-
ing height of the boxes. Overall, RDMA shows
the best median latency around 3.3μs, evidenc-
ing the benefits of NIC hardware support. XDP
Poll has a more variable latency with a jump from
9μs to 128μs at 800Mbps while AF_XDP achieves
much better scalability with stable median latency
around 15μs. The interesting phenomenon of
median latency reduction for higher throughput
values is covered as part of the section “RQ2: Tun-
ing Effects” OS-bypass datapaths manage to keep
the 99.99th percentile latency below 100μs for the
two lower throughput values but suffer from a 2×
increase at higher rates.

FIGURE 2. Single trip latency of 1KiB packets at increasing throughput values. Boxes edges range from 25% to 75% of the distribution,
whiskers from 0.01% to 99.99% percentile and circles show the remaining outliers. The y-axis is in log-scale. Boxes are ordered left
to right for each method listed in the legend.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

https://github.com/swystems/
https://github.com/swystems/

IEEE Network • May/June 2025 79

Takeaways. Our tests show that both XDP and
RDMA introduce non-negligible jitter, resulting in
over 10× increase in latency in the worst case,
slightly above 100μs. Overall, the best approach
under normal system conditions is RDMA and the
worst is UDP in terms of median and maximum
latency, while all approaches perform similarly in
terms of relative jitter.

RQ2; Tuning Effects
This experiment analyzes the effects of perfor-
mance tuning for low jitter on the evaluated
methods. In order to showcase the impact of per-
formance tuning even for light processing loads,
we choose a fixed low throughput of 80Mbps
for all our tests. Inspired by seminal work on
deterministic coordination [13] and system tuning
guides [14], we apply the following system optimi-
zations. We
•	 pin the sender and receiver processes to

cores assigned to the isolcpus kernel
boot parameter;

•	 route all IRQs away from the dedicated
cores using the proc interfaces to further
limit (but not disable) OS interrupts target-
ing our isolated cores;

•	 disable interrupt coalescence settings in the
NIC to avoid unwanted IRQ batching at
send and receive;

•	 set the CPU governor of dedicated cores to
the highest power state (Intel C-state C0) to
avoid costly wake-ups from sleep states.
Figure 3 and Table 1 present latency metrics.

We report the latency distribution of the default
system with no load from RQ1 experiments
(labelled “Default”) and compare it against the
system under 80% CPU load (labelled “Default
& Stress”) and the system with performance tun-
ing under the same 80% CPU stress (labelled
“Tuned & Stress”). Application of stress dramati-
cally deteriorates the default system’s worst-case
latency performance by at least 100× for server
experiments: upper whiskers (99.99th percen-
tile) and outliers reach almost ∼4ms latency
for both XDP methods and RDMA, with UDP
sockets reaching ∼7ms peaks. The tuned sys-
tem, on the other hand, manages to achieve
much better worst-case latency, even improving
on the default configuration: isolation settings
prevent context switch interference introduced
by arbitrary CPU load. The same effect can be
seen on the embedded device (Raspberry Pi)
wireless setup, which suffers from a 5× (72ms)
jitter increase upon high CPU load, mitigated by
tuning which brings it down to 1.8× (23ms). As
expected, the absolute latency and jitter values
are much higher than in the wired server setups.
We omit XDP tests for the Raspberry Pi setup
due to the lack of native XDP support from the
network driver.

A key outcome of performance tuning is that
the 99.99th and 100th percentile latencies of
all approaches in server experiments are much
closer to each other than in the default setup. An
interesting observation is that mean and median
latencies of the untuned configuration with high
CPU stress seem to improve on the default sys-
tem configuration with no stress. We attribute this
to CPU power states: a busy CPU is less likely to
be assigned a lower power state, hence lower

frequency, rendering the CPU more responsive
in the common case. The tuned configuration
achieves the same effect by manually setting the
CPU governor to performance mode.

Takeaways. Results suggest that performance
tuning of the OS is the predominant factor in jitter
mitigation, independently from the datapath used.
This is required in Linux-based servers and embed-
ded devices under heavy CPU load to prevent
processing latency spikes overbearing network
latency. Combining an OS-bypass datapath with
performance tuning provides the best of both
worlds: low average latency at high traffic load
and limited jitter at high processing loads.

The Usability Barrier Hindering Determinism
OS-bypass methods have a degree of specialization
which sits in between established OS-supported
network I/O methods, such as UDP sockets, and
custom hardware solutions, such as dedicated
FPGAs or ASICs. Nonetheless, we find that they
still require substantial development effort, further
aggravated by the equally challenging procedure
of tuning the OS for low latency and jitter. In this
section we gauge the engineering effort involved in
the attempt of bringing determinism to the packet
processing layer, discussing how limited usability is
detrimental for determinism.

Development Effort
Table 2 shows the Lines of Code (LoC) used
for the C implementation for each datapath
with standard optimization. As expected, the
well-established UDP socket abstraction results in
the smallest number of LoC. XDP Poll follows with
a total of 600 LoC which include additional user-
space logic to implement the polling functionality
and the eBPF map operations in kernel space.

FIGURE 3. Latency distribution at 80 Mbps with different system configurations.
The left plot reports results of the default system from Figure 2, to which
we apply 80% CPU stress (central plot) and then tune the system for
latency-critical performance (right plot). The y -axis is in log-scale.

Combining an OS-bypass datapath with performance tuning provides the best of both worlds: low
average latency at high traffic load and limited jitter at high processing loads.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 202580

The two more flexible approaches, AF_XDP and
RDMA come with similar development overhead
due to concurrent low-level buffer handling logic.
This showcases the typical cost of specialization,
which makes the adoption and optimization of
OS-bypass technologies a difficult task. We argue
that the limited maturity of OS-bypass technol-
ogies is also a major contributing factor to the
added development effort and advocate for the
need of suitable abstraction layers without trading
off performance, as attempted by some projects,
e.g., Demikernel [10].

Like other state-of-the-art low-latency frame-
works [13], we applied low-latency performance
tuning of the OS following engineering best
practices [14], involving manual configuration
of scheduling, power management, Linux ker-
nel and NIC settings (the section “RQ2: Tuning
Effects”). The procedure was very time-consuming
and error-prone, requiring several weeks of tri-
al-and-error iterations needed to find the right
“recipe”. High resource consumption is another
consequence of the tuning procedure which,
in our analysis, requires one full CPU core
idling with performance power settings, causing
non-negligible disruption to other processes, espe-
cially under heavy load.

Usability Challenges
The set of software tools to enable high-
performance packet processing currently
available in commodity OSs (e.g., Linux) make it
possible to achieve a certain degree of reliable,
low-latency packet processing. However, while
it remains uncertain whether their programma-
bility will meet the stricter determinism demands
anticipated for future 6G networks and wired
standards like TSN and DetNet, our analysis
highlights a notable gap in usability. This encom-
passes both the high complexity involved in the

implementation of highly specialized OS-bypass
techniques and, most importantly, the absence
of straightforward mechanisms for configuring
“deterministic” settings. We claim that poor
usability is a major barrier to determinism for two
reasons. First and foremost, it hinders the cor-
rect implementation of deterministic programs,
leading to situations in which a single miscon-
figured option of a single device would impact
the end-to-end response time guarantees of a
whole system. Secondly, it affects reproducibility,
obstructing widespread adoption of a determinis-
tic datapath across a wide range of device types.
We argue that substantial advances are required
to improve usability in the packet processing
layer to better support reliability and low-latency
targets of current networked systems and, even
more critically, of 6G networks.

Design Guidelines for a Deterministic and
Practical 6G Datapath

In this section we elaborate on the takeaways
from our analysis to propose a generic design of
a packet processing layer which is both determin-
istic, meaning it provides reliable packet delivery
with low latency, and is practical. Figure 4 shows
the proposed design which we discuss in the sec-
tions below.

Combining OS Tuning With OS Bypass
State-of-the-art datapaths (i.e., OS-bypass tech-
nologies) provide unmatched scalability, allowing
end devices to withstand hundreds of Gbps of
throughput from rapidly-evolving networks.
However, they are not sufficient to guarantee
reliable low-latency interactions under high pro-
cessing load, which is, unfortunately, a growing
requirement of edge-cloud systems in 6G net-
works, especially in end devices. Let’s take, for
instance, AF_XDP’s 99.99th percentile one-way
latency between two powerful servers under pro-
cessing load of 2 ms (see Table 1). Considering
that the 5G new radio (NR) standard release 17
targets one-way Radio Access Network (RAN)
downlink or uplink user-plane latencies of 0.5
ms with reliability up to 99.9999th percentile [3]
(unchanged in 5G-advanced release 18), we can
easily see how processing can result in having
larger “non-determinism” in end-to-end commu-
nication. Our analysis indicates that performance
fine-tuning of the end device OS is essential to
cap latency to around 100μs, falling into the 5G
target range.

Method Userspace LoC Kernelspace LoC

UDP socket 176 0

XDP poll 397 103

AF_XDP 689 45

RDMA 625 0

TABLE 2. Lines of Code (LoC) per implemented
method. All programs were written in C and use
standard optimization.

Method
Median latency 99th percentile lat. 99.99th percentile lat. Maximum latency Jitter

D D&S T&S D D&S T&S D D&S T&S D D&S T&S D D&S T&S

XDP Poll 9.44 7.02 7.46 11.22 12.84 9.07 50.8 3051 46.72 248.3 4003 99.46 241.3 3998 92.38

AF_XDP 15.09 10.36 6.24 46.34 14.56 7.81 68.12 2024 52.91 249.6 3998 114.6 238.7 3990 108.6

RDMA UD 3.02 3.1 2.96 3.59 3.41 3.16 5.52 1997 37.4 9.9 3974 93.57 6.94 3971 90.69

UDP Socket 24.82 12.46 11.92 85.21 2174 14.09 122.2 4669 60.69 136.8 6827 99.37 118.9 6818 89.96

UDP Socket (RPi setup*) 1821 2912 1823 11026 66592 19805 13725 74329 24225 14723 75325 24844 12902 72413 23021

TABLE 1. Summary of latency metrics at 80 Mbps. System configurations are indicated with D = Default, D&S = Default and Stress, T&S
= Tuned and Stress. Values are in μs. *Embedded test setup using Raspberry Pi 4 on a 5GHz wireless network.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 2025 81

Future deterministic packet processing layers
should therefore combine high-performance
packet processing with performance tuning of
the OS as shown in Figure 4, possibly lever-
aging techniques from established real- time
OSes. Moreover, our analysis substantiates the
need for advances in both packet processing
technologies and performance tuning to better
support determinism. This is required to keep
up with the evolution of 6G networks in terms
of reliability and low-latency and avoid process-
ing overhead to become the bottleneck of the
communication.

A Practical, Homogeneous Packet Processing Layer
In the section “The Usability Barrier Hindering
Determinism” we discussed how the limited
usability of current packet processing layers and
commodity OSs hampers determinism of end-to-
end interactions in current and future networked
systems. Additionally, as highlighted by recent pro-
posals of integration of different mobile networks
innovations into a consistent architecture, “6G
superpower must be simplicity” [15]. Establish-
ing suitable abstraction layers without trading off
performance is therefore a primary requirement
of end devices in 6G networks. Demikernel [10],
a seminal work in this area, introduces a prom-
ising datapath design which aggregates multiple
OS-bypass systems to enhance usability and por-
tability. However, neither Demikernel, nor other
work, to our knowledge, addresses end-to-end,
reliable processing.

We propose an architecture draft (Figure 4)
where a deterministic datapath offers a homo-
geneous, full-featured interface to the user to
significantly improve usability of configuring and
programming end devices. The interface bene-
fits from (1) including existing high-performance
packet processing frameworks and should seam-
lessly (2) integrate endpoints for configuration
performance tuning. We include both features into
the deterministic datapath (green box in Figure 4),
which time-sensitive applications use as a reli-
able packet processing layer to send and receive
packets over a 6G network. This component
should also be extendable with future technol-
ogies and mechanisms arising from end device
software research. Support of a commodity OS
(e.g., Linux-based) would also foster widespread
adoption. This would allow applications to seam-
lessly choose between normal, best-effort packet
processing, or deterministic packet processing,
providing the tools to optimize a given workload
through a single interface.

Conclusion and Outlook
Following the trend from 5G, 6G networks are
expected to deliver strong deterministic guar-
antees for end-to-end communication between
time-sensitive applications. While the proposed
integrations with wired standards such as TSN
and DetNet show promising advances in the com-
munication layer, the packet processing layer at
the end devices has been left out of the picture.
We show that current high-performance packet
processing technologies, namely OS-bypass dat-
apaths, struggle to keep up with the speed and
reliability of the network. Going forward we
advocate for improvements on how quickly and

reliably network packets are processed at the end
devices. In particular
•	 additional work is required to further

increase reliability and speed of datap-
aths in 6G end devices subject to heavy
processing load and multitasking. Namely,
datapaths should aim at upper-bounded,
μs-scale processing latency as targeted by
recent 5G standards targets [3].

•	 deterministic response times should be guar-
anteed across the entire spectrum of 6G
devices (datacenter servers, mobile, embed-
ded, etc).

•	 more work is needed to abstract highly
complex implementation and configuration
of deterministic packet processing pipe-
lines involving OS-bypass technologies and
performance tuning. A practical datapath
is required to facilitate convergence in 6G
network devices, enabling error-free deter-
ministic processing.

•	 the community needs to address the
challenging task of providing the right

FIGURE 4. Architecture draft for a practical, homogeneous datapath to support
deterministic processing in 6G end device communication.

A practical datapath is required to facilitate convergence in 6G network devices, enabling error-free
deterministic processing.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • May/June 202582

interfaces to programmers, allowing them to
tailor deterministic properties to the specific
needs of an application, striking the balance
between programmability and practicality.

•	 deterministic datapaths need to support a
very diverse software and hardware eco-
system. Future datapaths should be easily
extendable to support new technologies
(frameworks, technologies, OS configura-
tions, hardware platforms, etc.) and auto-
matically adapt to the underlying system.
We conclude by proposing a high-level

architecture draft of a deterministic datapath
which addresses some of the above-mentioned
challenges.

Acknowledgment
This work was supported in part by SNSF under
Grant 192121 and Grant 197353, in part by
the Hasler Foundation, and in part by the Meta
Research through Research in Distributed Systems
Award.

References
[1] G. P. Sharma et al., “Toward deterministic communications in

6G networks: State of the art, open challenges and the way
forward,” IEEE Access, vol. 11, pp. 106898–106923, 2023.

[2] M. Polese et al., “Toward end-to-end, full-stack 6G Terahertz
networks,” IEEE Commun. Mag., vol. 58, no. 11, pp. 48–54,
Nov. 2020.

[3] T.-K. Le, U. Salim, and F. Kaltenberger, “An overview of phys-
ical layer design for ultra-reliable low-latency communica-
tions in 3GPP releases 15, 16, and 17,” IEEE Access, vol. 9,
pp. 433–444, 2021.

[4] (2024). DPDK, Data Plane Processing Kit. Accessed: May 15,
2024. [Online]. Available: https://www.dpdk.org/

[5] (2007). RFC 5040—A Remote Direct Memory Access Protocol
Specification. Accessed: May 15, 2024. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5040

[6] (2024). Cilium EBPF and XDP Reference. Accessed: Oct. 29,
2024. [Online]. Available: https://docs.cilium.io/en/latest/bpf/

[7] S. McClure et al., “Efficient scheduling policies for
microsecond-scale tasks,” in Proc. 19th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), Apr. 2022, pp. 1–18.

[8] (2024). Android–Extend the Kernel With EBPF. Accessed:
Oct. 29, 2024. [Online]. Available: https://source.android.
com/docs/core/architecture/kernel/bpf//

[9] (2018). AF_XDP—The Linux Kernel Documentation. Accessed:
May 15, 2024. [Online]. Available: https://www.kernel.org/
doc/html/v5.12/networking/af_xdp.html

[10] I. Zhang et al., “The demikernel datapath OS architecture
for microsecond-scale datacenter systems,” in Proc. ACM
SIGOPS 28th Symp. Operating Syst. Princ., New York, NY,
USA, Oct. 2021, pp. 195–211.

[11] D. Géhberger et al., “Performance evaluation of low laten-
cy communication alternatives in a containerized cloud
environment,” in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), Jul. 2018, pp. 9–16.

[12] K. C. du Perron, D. L. Pacheco, and F. Huet, “Understand-
ing delays in AF_XDP-based applications,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2024, pp. 5497–5502.

[13] P. Jahnke et al., “Live in the express lane,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), Jul. 2021, pp. 581–597.

[14] (2020). Erik Rigtorp’s Low Latency Tuning Guide. Accessed:
May 15, 2024. [Online]. Available: https://rigtorp.se/
low-latency-guide/

[15] G. Pongrácz et al., “Towards extreme network KPIs with
programmability in 6G,” in Proc. 24th Int. Symp. Theory,
Algorithmic Found., Protocol Design Mobile Netw. Mobile
Comput., New York, NY, USA, Oct. 2023, pp. 340–345.

Biographies
Davide Rovelli (roveld@usi.ch) received the B.Eng. and M.Eng.
degrees in electronic and software engineering from the Univer-
sity of Glasgow. He is currently pursuing the Ph.D. degree with
the Software Systems (SWYSTEMS) Laboratory, Università della
Svizzera italiana (USI). His research explores fast and reliable
distributed systems with particular focus on synchronous sys-
tems leveraging latest datacenter technologies, including oper-
ating systems, in-network computing, and hardware/software
co-design.

Michele Dalle Rive received the B.Sc. degree in informatics
from Universita della Svizzera italiana (USI). He is currently pur-
suing the M.Sc. degree in computer science with ETH Zürich.
During his time as a Research Assistant at USI, he worked on
system programming for synchronous systems, with focus on
operating system bypass, low-level optimizations, and safe pro-
gramming languages.

Patrick Eugster received the M.S. and Ph.D. degrees from EPFL
in 1998 and 2001, respectively. He is currently a Full Professor
of computer science with Università della Svizzera italiana (USI),
where he leads the Software Systems (SWYSTEMS) Group. His
research interests include distributed systems, especially their
intersection with security and programming languages. He is a
member of the DARPA Computer Science Study Panel in 2011.
He was a recipient of the NSF CAREER Award in 2007 and the
ERC Consolidator Award in 2012.

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 30,2025 at 11:37:17 UTC from IEEE Xplore. Restrictions apply.

https://www.dpdk.org/
https://datatracker.ietf.org/doc/html/rfc5040
https://docs.cilium.io/en/latest/bpf/
https://source.android.com/docs/core/architecture/kernel/bpf//
https://source.android.com/docs/core/architecture/kernel/bpf//
https://www.kernel.org/doc/html/v5.12/networking/af_xdp.html
https://www.kernel.org/doc/html/v5.12/networking/af_xdp.html
https://rigtorp.se/low-latency-guide/
https://rigtorp.se/low-latency-guide/
mailto:roveld@usi.ch

